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Abstract

This paper examines the extent to which efficiency gains diffuse over a network of firms. Empiri-

cal studies typically estimate firm-to-firm spillovers using producitivity measured from estimated

production functions. However, standard production function estimation methods implicitly

rule out the interdependence of firms’ outcomes and decisions through productivity spillovers.

I show that ignoring network effects when estimating production functions biases productivity

and spillovers in directions that cannot generally be predicted a priori. To address this limita-

tion, I develop a framework to jointly estimate network effects and firm-level productivity. My

approach can account for non-random buyer-supplier matching and network effects that vary by

relationship direction and firm characteristics. Using this method, I characterize productivity

spillovers over the US production network from 1977 to 2016 and find substantial heterogeneity

by direction, industry, firm size and over time. My results suggest that the average firm in

1978 would be 16 percent more productive by 2016 due to spillovers. In addition, a 10 percent

increase in the productivity of the most central firm in each year could result in up to a 2

percent rise in aggregate TFP through spillovers alone. These findings highlight the potential

for industrial policy, even if narrowly targeted, to have broader ramifications for the economy

as a whole.

*This paper was previously circulated under the title “Production Function Estimation in the Presence of

Spillovers.” I am immensely grateful to Joel Rodrigue, Yuya Sasaki, Kamal Saggi and Ben Munyan for their ad-

vice and support on this project. I would also like to thank Jason Allen, Mario Crucini, Atsushi Inoue, Matthew

Zargoza-Watkins and seminar participants at Vanderbilt University, Loyola Marymount University Economics, the

Center for the Study of the Economies of Africa (CSEA) and conference participants at the Young Economists

Symposium 2020 for their comments and helpful suggestions. Many thanks to Enghin Atalay, Ali Hortaçsu, James
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1 Introduction

Production function estimation is at the heart of a number of important questions in economics.

From examining changes to market power, assessing the impact of trade liberalization, to decom-

posing the sources of aggregate productivity growth, understanding firms’ decisions and their impli-

cations on market outcomes often hinges on the accurate measurement of total factor productivity

(TFP).

A significant finding of the literature on firm-level productivity is that businesses exhibit marked

differences in TFP, even within narrowly-defined industries, and a vast body of work seeks to explain

this dispersion.1 One possible explanation is that firms may affect each other in ways that do not

show up in the prices of intermediate goods and services; they may experience spillovers from

knowledge transfers or agglomeration externalities. For example, in the trade literature, firms have

been found to impact the productivity of counterparts through activities such as foreign direct

investment (FDI) and exporting.2 Javorcik (2004) finds that FDI in Lithuania has a positive effect

on the productivity of domestic firms through backward linkages, while Keller and Yeaple (2009)

document the existence of horizontal spillovers from multinationals to US firms. Likewise, Alvarez

and López (2008) provide evidence from Chile of positive productivity spillovers from domestic

and foreign-owned exporters on their suppliers, and Alfaro-Urena et al. (2019) finds TFP gains of

6− 9% among Costa Rican firms after they begin to supply to multinational corporations.

My paper quantifies the transmission of productivity gains through buyer-supplier relationships

in the United States, and examines how the existence of spillovers affects the measurement of

TFP. I consider spillovers not just from firm activities, but directly from productivity as well.

A firm’s TFP could increase or decline due to the productivity of the firms with which it has a

relationship. The expected direction of this effect is not immediately clear: firms learning from

their peers and become more productive or might free-ride on their trading partners’ efficiency.

Empirical investigations into direct efficiency spillovers are relatively new. Serpa and Krishnan

(2018) examine this question with data on firm-level buyer-supplier relationships in the US, while

Bazzi et al. (2017) use input-output matrices to construct measures of the relationships between

Indonesian firms. Both studies find that firms enjoy significant boosts to productivity from their

relationships with more productive counterparts.

However, an important gap exists in the literature on productivity spillovers. Many studies

assess the existence of spillovers using TFP estimates obtained from semi-parametric proxy vari-

able/control function approaches. Introduced by Olley and Pakes (1996) and refined in Levinsohn

and Petrin (2003), Wooldridge (2009) and Ackerberg et al. (2015) (hereafter OP, LP, Wooldridge

and ACF respectively), these methods rely on an assumption that a firm’s future productivity de-

pends only on its own past productivity and characteristics. Alternative methods like Gandhi et al.

(2020) rely on first order conditions for identification, but still rely on the same assumption on the

productivity evolution process. This implies that each firm’s productivity evolves independently,

1See Syverson (2011) for a review.
2See Keller (2010) for a review of the evidence on spillovers from FDI and exporting.
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and implicitly rules out the existence of anticipated spillovers.

The contributions of this paper are three-fold. First, I show that when productivity spillovers

exist, failing to account for this interdependence could lead to biased estimates of production func-

tion elasticities and TFP. Using Monte Carlo experiments, I demonstrate that input elasticities are

generally not consistent when the law of motion for productivity precludes spillovers. As De Loecker

(2013), De Loecker et al. (2016), and Garcia-Marin and Voigtländer (2019) point out, our conclu-

sions about what drives changes in productivity are sensitive to how it is measured. De Loecker

(2013) shows that measuring TFP under standard assumptions can lead us to underestimate the

impact of exporting on productivity. In Garcia-Marin and Voigtländer (2019), the downward bias

in learning-by-exporting estimates comes from revenue-based productivity measures that cannot

disentangle the lower prices firms charge upon entry into export markets from their increased ef-

ficiency. Unfortunately, the direction of bias in spillover estimates is not so clear-cut. I find that,

depending on the structure of the network and persistence of productivity over time, estimating

spillovers on mismeasured TFP can lead us to overestimate network effects in some cases and

underestimate them in others.

Secondly, I propose a modification to standard control function and first order condition ap-

proaches that flexibly accounts for the presence of spillovers. To do so, I apply results from the

peer effects and spatial econometrics literatures Lee (2003); Bramoullé et al. (2009); Lee and Yu

(2016), with an important distinction: these papers deal with outcomes that are observed, whereas

I jointly estimate the outcome and spillovers. This comes at the cost of a few additional assump-

tions that are, nonetheless, compatible with both the standard production function and network

effects frameworks. An advantage of the proposed method is that, even in the absence of spillovers,

the estimator does not generate spurious network effects and provides consistent, albeit less precise,

estimates of the input elasticities. It can also accommodate confounders such as common shocks

to firms in the same network and the endogeneity of network formation. I extend the framework

to examine heterogeneous spillovers in the manner of Dieye and Fortin (2017) and Patacchini et al.

(2017), that vary by the nature of the relationship between firms and their characteristics.

Third, I apply this methodology to examine the transmission of efficiency gains through the

production network of publicly listed firms in the United States from 1977 to 2016. I find evidence of

positive productivity spillovers, with a stronger impact from suppliers to customers, and substantial

heterogeneity by sector and firm size. Estimates suggest that if the most connected firm in a given

year was 10 percent more productive, spillovers would lead to an increase in aggregate TFP of 0.2

to 1.9 percent. Furthermore, the cumulative impact of spillovers over time implies that the average

firm in 1978 would be 16 percent more productive by 2016 due to spillovers alone. Decomposing

the spillovers by sector, shows that electronics manufacturers have benefited from almost all other

sectors and while retailers are important sources of efficiency gains.

My results highlight an additional channel for industrial policy to affect economic growth. Given

that a substantial portion of these spillovers can be attributed to distribution and information

technology, policymakers could target high-growth sectors that can generate these second-order
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effects. Furthermore, the centrality of a few firms to the production network suggests that policies

adversely impacting such firms could have broader negative ramifications for the US economy.

In the next section, I describe the data and features of the sample of the US production network

that I observe. Section 3 presents my empirical framework and discusses the biases that arise

from ignoring spillovers in the standard control function approach. In section 4, I propose a

procedure for estimating production functions in the presence of various network effects and clarify

the assumptions needed to obtain valid estimates. I introduce a model of network formation in

section 5 to account for endogenous network selection. Section 6 demonstrates the advantages of

my approach over existing methods using Monte Carlo experiments. I consider extensions to the

benchmark model including a gross output production function in section 7. Section 8 presents my

empirical results and section 9 concludes.

2 Data: The US Production Network

I begin by describing the data with which I characterize the firm-level production network within

the United States, to highlight features that will be important for my empirical methodology.

To examine the magnitude and origins of productivity spillovers in the US, I rely on a panel of

publicly-listed firms in the Compustat database from 1977 to 2016. Compustat collects companies’

financial statements from form 10-K reports filed with the US Securities and Exchange Commission

(SEC). This provides detailed information on firms’ sales, capital stock, expenses and employees. I

supplement this with industry-level deflators and wages from the US Bureau of Economic Analysis

(BEA) to construct the necessary variables for estimating a production function.3

Information on buyer-supplier links also comes from 10-K reports. Statement no. 14 issued in

December 1976 by the Financial Accounting Standards Board (FASB) requires each firm to report

any customers that are responsible for 10% or more of its sales within a fiscal year. I conservatively

match the reported customer names to company financial data. The resulting network contains

18,872 unique buyer-supplier pairs and 66,052 dyad-year observations.4

I restrict the firm-level sample to the businesses that either report or are reported as customers,

and have positive values of sales, capital stock, labor and materials. I discard firms in agriculture,

forestry and fishing, because these industries have too few observations in both the firm- and dyad-

level datasets. This yields an unbalanced panel of 8,353 firms and 55,047 firm-year observations.

Table 1 reports average firm characteristics by decade and over the full sample. Due to the

nature of the firms in question, and the restriction to companies with customer or supplier data,

firms in the sample tend to be large, averaging 19,000 employees and $6.08 billion in annual sales.

Based on the BEA’s classification of large enterprises as firms employing 500 or more workers, about

two-thirds of the sample are large firms. As shown in table 2, manufacturers comprise more than

3See section D in the appendix for further details on variable construction.
4Other studies that have used this dataset to study the US production network include Atalay et al. (2011), Lim

et al. (2017) and Serpa and Krishnan (2018). I am grateful to the authors of Atalay et al. (2011) for graciously
sharing their matched buyer-supplier data with me.
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half of the firms in the sample. Information and Services are the next largest sectors represented

in the sample.5

The observed sample of the production network is sparse; that is, the number of connections per

firm is low. Figure 1 shows that firms report 1 or 2 customers on average, while the same customers

are reported by about 3 or 4 suppliers. Consistent with the 10% sales reporting requirement,

reported customers tend to be large; the average customer realizes about eight times as much in

sales as the average supplier in the data (see figure 5). This may be due to two factors: relatively

small firms are likely to have major customers and larger firms are likely to be major customers.

However, although the value traded in the average reported relationship is sizable and increases

over time, figure 2 indicates each individual relationship makes up a declining share of suppliers’

sales.

In figure 4, I examine features of the network that affect the identification of spillovers within

my framework. Network density, measured by the number of observed links as a fraction of all

possible links, does not exceed 0.28% in any year. The network gets sparser at the beginning of

the sample and denser after the mid-90’s. At the same time, network transitivity, the number of

observed triads as a share of all possible triads, trends upwards throughout the sample, but does

not exceed 1.2%. In sections 3 and 4, I discuss the importance of density and transitivity for

both the biases in input elasticities from standard approaches and the performance of my proposed

estimator.

Each year, the production network is often dominated by a large cluster of firms connected to

each other. Figure 3 shows that the number of edges in the largest connected component as a share

of all edges in the network ranges from 56 to 70%. This is largely due to the presence of a few

well-connected firms while the remainder of the network consists of peripheral small clusters.

Variations in clustering patterns over time reflect changes in the relative importance of each

industry. Figure 7 reports the 10 most central firms as measured by the number of links a firm has

as a share of all observed links. In the first 10 years of the sample, manufacturers of automotives

and other durable goods dominated the list. In the next decade, AT&T rose to the top of the list,

and electronics manufacturers like IBM had begun to emerge. In the 1997-2006, Walmart had risen

to the top the list, and while automotive and electronics manufacturers still featured at the top of

the centrality distribution, their centrality had declined relative to earlier decades. By the end of

the sample, most manufacturers had been superseded by retailers and wholesalers had become the

most connected firms, with Walmart continuing to top the list.

Figure 6 shows the relationship between a firm’s labor productivity, as measured by the natural

log of sales per employee and that of its average buyer or seller. The slope of the fitted regression

line is 0.38, indicating a strong positive correlation between the two quantities. Interpreting this

relationship would require distinguishing between several possible explanations. Foremost is the

question of direction: does a firm become more efficient by learning from its neighbors, or does

causation move in the opposite direction? And if a firm is simultaneously affected by and affecting

5See section D for a full list of industries in each sector.
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its partners, how can one pin down the magnitude of the effect? On the other hand, this relationship

may driven by the sorting of firms; if more productive firms trade with each other, then this

correlation is evidence of network formation rather than spillovers. Yet another possibility is that

supply chains are a channel for the transmission of production and demand shocks, inducing the

revenues of connected firms to move in the same direction.

Each of these explanations has different implications for how productivity is measured: if there

are spillovers due to learning, then firms’ input decisions will likely be influenced by the efficiency

of their suppliers or buyers, whereas unanticipated common shocks are unlikely to affect input

choices to the same degree. In the next section, I introduce an empirical framework with the goal

of distinguishing between these channels, examining how they impact the measurement of TFP,

and quantifying the direction and magnitude of productivity spillovers.
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Table 1: Firm Characteristics

1977-1986 1987-1996 1997-2006 2007-2016 Full Sample

Sales 3.29 3.65 6.45 10.57 6.08
(12.27) (14.64) (22.17) (28.9) (21.03)

Sales per 1000 employees 0.29 0.34 0.51 0.83 0.5
(1.16) (0.82) (3.63) (7.19) (4.12)

Value Added 0.93 1.02 1.88 3.47 1.85
(2.9) (3.04) (5.34) (8.23) (5.47)

Capital stock 3.23 3.52 4.89 9.79 5.4
(12.01) (14.49) (18.13) (33.22) (21.41)

Materials 2.53 2.85 4.73 7.12 4.37
(11.06) (13.45) (18.86) (22.98) (17.56)

Employees (thousands) 15.35 13.9 19.15 27.22 18.95
(48.73) (43.41) (61.46) (84.71) (62.02)

Large firm (employees ≥ 500) 0.65 0.63 0.68 0.77 0.68

Observations 10339 15268 15495 13455 54557

This table reports average characteristics of firms in the sample. Standard deviations are in parentheses. All
monetary values are in 2009 billion USD.

Table 2: Industry Composition

1977-1986 1987-1996 1997-2006 2007-2016 Full Sample

Mining 9.2 5.8 4.0 7.4 6.3
Utilities 6.9 5.3 2.8 3.4 4.4
Construction 0.9 0.8 0.9 1.0 0.9
Durables Manufacturing 25.4 21.4 19.1 16.8 20.4
Non-Durables Manufacturing 17.6 17.7 18.6 19.7 18.4
Electronics Manufacturing 14.9 17.9 19.7 16.8 17.6
Wholesale 3.3 4.7 4.3 3.7 4.1
Retail 3.6 4.3 4.6 4.7 4.4
Transport and Warehousing 4.4 3.3 3.4 4.3 3.8
Information 5.5 8.9 10.5 10.2 9.0
Finance, Insurance & Real Estate 2.7 2.8 3.3 4.9 3.5
Services 5.6 7.1 8.9 6.9 7.3

Total 100 100 100 100 100

This table reports the distribution of firms in the sample by primary sector as determined by the BEA industry
classification.
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Figure 1: Average Firm Degree
This figure shows annual average out- and in-
degrees (customers and suppliers) for firms in the
sample.

Figure 2: Value Traded in Relationships
This figure shows the annual average value traded
by each buyer-supplier pair in nominal Million USD
and as share of the each seller’s total sales.

Figure 3: Network Clustering and Components
This figure shows the number of connected com-
ponents and the largest component as share of all
edges in the network sample over time.

Figure 4: Network Density and Transitivity
This figure shows the density and transitivity of the
network sample over time.

Figure 5: Customer and Supplier Sales
This figure shows annual average sales (in 2009 Bil-
lion USD) of firms reporting and reported as cus-
tomers in the sample.

Figure 6: Relationship between Labor Produc-
tivity of Firms and their Trading Partners
This figure shows the relationship between the la-
bor productivity of a firm and its buyers and sup-
pliers. The slope of the fitted regression line is 0.38.
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Figure 7: Firm Centrality
This figure shows the top 10 firms by average centrality in each period.
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3 Empirical Framework

Consider a production technology for firm i in period t in which productivity is Hicks-neutral:

Yit = F (Lit,Kit)e
ωit+εit (1)

where output Yit is a function of labor, Lit and capital, Kit. Output is shifted by an exogenous

shock eεit independent of all variables known to the firm by the end of the period, the information

set It. eωit is firm-specific TFP that is unobserved by researchers but known to the firm when

making production decisions. F (·) is known up to some parameters. Taking the natural log of (1)

yields:

yit = f(Lit,Kit) + ωit + εit (2)

The main limitation to estimating f(·) is a simultaneity problem: firms choose their inputs

based on the realization of ωit. Therefore, simply regressing a firm’s output on its inputs would

lead to a biased estimate of f(·).
To address this issue, the control function/proxy variable approach makes a set of assumptions

on timing, a proxy variable and how productivity evolves over time. The existence of spillovers

primarily poses a problem for the last set of assumptions. Productivity is typically assumed to

follow a first-order Markov process:

ωit = h(ωit−1) + ηit (3)

where h(·) is unknown and ηit is mean independent of firm’s information set at the beginning of

the period It−1. Suppose instead that ωit is affected by some other firm j either through its past

decisions xjt−1 and/or its current productivity ωjt:

ωit = h(ωit−1,xjt−1, ωjt) + ζit (4)

where E[ζit | It−1] = 0. The effect of xjt−1 represents spillovers from firm j′s activities such as

research and development (R&D), FDI, exporting, etc. The inclusion of ωjt indicates that j being

more productive could contemporaneously influence i’s productivity. Since firm j’s TFP is also

determined by its past productivity ωjt, this representation indirectly allows for spillovers from

productivity to occur with a one-period lag, but also accommodates the possibility that firm i is

also affected by random shocks to j’s productivity, ζjt within the same period. In addition, it

enables researchers to differentiate between direct effects of firm activities

When researchers estimate TFP under the assumption in (3) whereas the true process is repre-

sented by (4), then the effect of firm j on i is attributed to ηit, which now violates the conditional

independence assumption. In the following subsections, I examine the biases arising from standard

control function approaches in greater detail.
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Accounting for xjt−1 is fairly straightforward if we assume that it is known to i at the beginning

of the period; that is, xjt−1 ∈ It−1. However, ωjt poses a more serious problem because it is

jointly realized with ωit and cannot therefore be assumed to be in It−1. In section 4, I outline the

assumptions needed to properly account for the effect of ωjt on ωit when estimating production

functions.

3.1 Control Function Approach

Suppose f(·) takes the form of a simple Cobb-Douglas production function as in Ackerberg et al.

(2015):6

yit = α``it + αkkit + ωit + εit (5)

where yit, kit, and `it are the logs of value-added7, capital and labor respectively. Obtaining con-

sistent estimates of α and ωit requires three sets of assumptions.

The first relates to the timing of firms’ decisions. Capital is a state variable, determined in the

preceding period as a deterministic function of the firm’s previous capital stock and its investment

decision: kit = κ(kit−1, iit−1). Labor, on the other hand, may or may not have dynamic implications.

It may be fully adjustable and chosen after productivity is realized, or partly (or wholly) determined

in the previous period. It, however, needs to be chosen prior to the intermediate input decision.

Based on its current capital stock, workforce and productivity, the firm chooses intermediate inputs

according to the following function:

mit = M(kit, `it, ωit)

Next, one needs to assume that the demand for materials, g(·) is strictly monotonic in productiv-

ity, and that productivity is the only unobservable component of the input demand function. This

guarantees that TFP can be expressed solely as a function of observables ωit = M−1(kit, `it,mit).

Substituting into the production function yields:

yit = α``it + αkkit + M−1(kit, `it,mit) + εit (6)

Although αk and α` are not identified in this equation, we can obtain consistent estimates of the

firm’s expected value-added:

E[yit|Iit] = ϕit = α``it + αkkit + ωit (7)

This disentangles productivity from the idiosyncratic shock εit. In order to identify capital and

6I choose ACF because it allows for relatively flexible assumptions on the data-generating process for output,
capital, labor and materials. However, this critique applies more broadly to OP, LP, Wooldridge and first order
condition approaches such as Gandhi et al. (2020) that rely on similar assumptions on the productivity evolution
process.

7Output minus intermediate inputs.
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labor elasticities, the evolution process for productivity must be specified. A standard assumption is

that productivity follows a first-order Markov process given its information set Iit−1 in the previous

period:

ωit = h(ωit−1) + ηit (8)

where E[ωit|Iit−1] = E[ωit|ωit−1] = h(ωit−1). h(·) is known to the firm but unobserved by the

researcher, while ηit is idiosyncratic. Given (7) I can write lagged productivity as:

ωit−1 = ϕit−1 − αkkit−1 − α``it−1

=⇒ ωit = h(ϕit−1 − αkkit−1 − α``it−1) + ηit

Substituting into the production function yields:

yit = α``it + αkkit + h(ϕit−1 − αkkit−1 − α``it−1) + ηit + εit

Since E[εit|Iit] = 0 and E[ηit|Iit−1] = 0 by assumption, then we can identify αk, α` based on the

moment restriction:

E[εit + ηit|Iit−1] = E[yit − αkkit − α``it − h(ϕit−1 − αkkit−1 − α``it−1)|Iit−1] = 0 (9)

Using this equation, we can derive moment conditions to estimate the elasticities. Since, there are

three unknowns, (αk, α`, h(·)), a typical set of moments would be:

E[(ηit + εit)kit, `it−1], ϕit−1] = 0 (10)

3.2 Network Effects

To examine biases due to the existence of spillovers, we need to first understand how network effects

are characterized. Within a given year, relationships between nt firms result in a network. This can

be represented by an nt×nt adjacency matrix At such that Aij,t = 1 if firm i has a relationship with

firm j in that year and zero otherwise. These relationships could be transactional (i sells inputs

to j) or some other form of firm interdependence, such as i and j sharing a board member. The

adjacency matrix need not be symmetric. As is standard in the peer-effects literature, I impose

Aii,t = 0 for all i so that a firm cannot have a spillover effect on itself.

In most examples, I focus on buyer-supplier networks, but this framework could apply to other

types of inter-firm relationships.8 Suppose we are interested in how upstream firms are affected by

the productivity of their downstream network. Let Nit be the set of i’s customers in period t and

8Provided the network satisfies certain conditions for identification. See the rest of this section for details.
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nit = |Nit|.9 We would like to estimate the following network effects equation:

ωit = β1 + ρωit−1 + xit−1βx + λ
1

nit

∑
j∈Nit

ωjt +
1

nit

∑
j∈Nit

xit−1βx̄ + cψt + ζit (11)

where xit−1 is a 1 × k vector of exogenous firm characteristics that could influence productivity,

such as past R&D or exporting.

In this equation, there are three ways in which firm i’s network could be related to its pro-

ductivity. In the terminology of Manski (1993), the first channel is endogenous network effects: a

firm’s productivity is affected by the average productivity of its neighbors. This is measured by λ.

The second mechanism is contextual effects captured by βx̄. Firms may be influenced by the

characteristics or activities of their neighbors. For example, a firm’s R&D could generate positive

productivity spillovers on its business partners.

A firm’s relationships could also result in correlated effects, productivity shocks common to all

firms in a network cluster. Let ψt index the sub-components of a network in period t, that is firms

who are at least indirectly connected to each other. Then cψt is a correlated effect for all firms in

component ψt.

An underlying assumption here is that the network is exogenous; that is, firms do not select

partners in ways that are systematically correlated with their productivity. For now, I abstract

from network selection and address it in section 5.

For the rest of this discussion, it would be convenient to rewrite these equations in matrix

notation. Define the interaction matrix Gt as the row-normalized form of At.
10 Equation (11) can

be rewritten as:

ωt = β1ι+ ρωt−1 + xt−1βx + λGtωt +Gtxt−1βx̄ + cψt + ζt (12)

The reduced form is as follows:

ωt = (1− λGt)−1 (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + cψt + ζt) (13)

|λ| < 1 implies that we can represent (I − λGt)−1 as a geometric series.

ωt =

∞∑
s=0

λsGst (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + cψt + ζt) (14)

Bramoullé et al. (2009) prove that (12) is identified if the identity matrix I, G and G2 are lin-

early independent. The presence of intransitive triads11 guarantees that linear independence holds.

Production networks naturally have this structure because supply-chains tend to be unidirectional.

9Note that for some final goods producers and retailers, nit = 0. These firms may not experience spillovers from
others, but could still affect their suppliers.

10Gij,t = 1/ni if Aij,t = 1 and zero otherwise.
11An intransitive triad in a graph is a set of nodes i, j, k, such that i is connected to j and j to k, but k is not

connected to i.
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Therefore, if ωt was observed, one could estimate (12) using 2SLS (Lee, 2003; Bramoullé et al.,

2009), QMLE (Lee and Yu, 2016) or Bayesian methods in (Goldsmith-Pinkham and Imbens, 2013).

Measuring productivity adds a layer of complexity to the problem. A typical strategy as in

Javorcik (2004) and Serpa and Krishnan (2018), is to first obtain TFP values by estimating a

production function such as using a method described above, and use these estimates in the network

effects equation in (12). However, these approaches implicitly rule out the presence of spillovers,

and the resulting TFP estimates are incompatible with the a wide set of network models nested in

the peer effects model above.

3.3 Biases due to Network Effects

When productivity is affected by network effects, the independence assumption on the productivity

shock is violated. However, the impact on the estimation of production function elasticities will

differ by the type of effect.

Suppose TFP is estimated under the exogeneity assumption in (3) but the true process is given

by equation (12). This implies:12

E[ηt|It−1] = xt−1βx + λGtE[ωt | It−1] +Gtxt−1βx̄ + E[cψt | It−1]

In general, this expression is not equal to zero. xt−1 is a source of omitted variable bias but

De Loecker (2013) and Gandhi et al. (2020) show that the productivity process can be modified

to account for its impact, as long as xt−1 is in the firm’s information set at the beginning of the

period.13 Contextual effects can be accounted for in the same way under similar assumptions.

Provided that network formation is exogenous, including Gtxt−1 in equation (3) would eliminate

bias from this dimension.

GtE[ωt|It−1] poses a serious challenge because in general, E[ωt|It−1] 6= 0. Consider the corre-

lation between neighbors’ current productivity and current capital stock. Using the reduced form

of Gtωt:

E[Gtωt ◦ kt] = E[Gt (1− λGt)−1 (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + ζt) ◦ kt]

where ◦ is the Hadamard product.14 Even though capital stock was determined in the previous

period, it is still correlated with current productivity spillovers because productivity persists over

time, and investment in the previous period was a function of productivity at the time. That is

k(it) = κ(kt−1, it−1(ωt−1)) and therefore, E[Gtωt × kt] 6= 0. The same argument can be made for

labor which is a function of productivity in the same period: lt−1(ωt−1) =⇒ E[Gtωt ◦ `t−1] 6= 0.

The direction of bias will depend on the sign and size of λ and the relationship between capital,

12Here, I assume that Gt, {ωjt−1}j∈Nit and {xjt−1}j∈Nit are in firm i’s information set at the beginning of the
period. I discuss this assumption explicitly in the next section.

13For example, as De Loecker (2013) notes, including firm’s current export status would not be valid because that
is dependent on productivity in the same period, but using previous export status would satisfy this condition.

14Element-wise multiplication.
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labor and productivity. For example, if networks generate positive productivity externalities and

capital stock is increasing in productivity, then αk will be biased upwards. If λ is small enough,

then the size of bias will be minimal. TFP values will be underestimated but the direction of bias

on λ is unclear.

On their own, correlated effects or network fixed effects do not introduce bias in the estimation

of αk and α`. Since the common component shocks are idiosyncratic each period, then kt and `t−1,

which were determined in the previous period are independent of cψt . However, to the extent that

network components and links do not vary much over time, failing to account for cψtt would bias

αk and α` estimates.

To illustrate the bias from ignoring endogenous network effects, consider the following process:

ωt = ρ(I − λGt)−1ωt−1 + (I − λGt)−1ζit = ρ

∞∑
s=0

λsGstωt−1 +

∞∑
s=0

λsGstζit (15)

Then the second stage of ACF is equivalent to estimating:15

=⇒ yt = α``t + αkkt + ρ
∞∑
s=0

λsGst (yt−1 − α``t−1 − αkkt−1 − ut−1) +
∞∑
s=0

λsGstζt + εt

Let ∆Gxt = xt−ρ
∑∞

s=0 λ
sGstxt−1, ∆err

xt = ρ
∑∞

s=1 λ
sGstxt−1 and ∆xt = xt−ρxt−1 = ∆Gxt+∆err

xt .

This implies:

∆Gyt = α`∆
G`t + αk∆

Gkt +

∞∑
s=0

λsGstζt + ∆Gεt (16)

This is equivalent to the dynamic panel approach in Blundell and Bond (2000). However, growth

in output, labor and capital have been purged of the variation from network effects in the previous

period. When we assume no spillovers, we estimate:

∆yt = α`∆`t + αk∆kt + ut (17)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing non-classical mea-

surement error into both output and inputs. Bias from ignoring spillovers can also be characterized

as an omitted variables problem. By estimating equation (17), where ut = ρ
∑∞

s=1 λ
sGstωt−1 +∑∞

s=0 λ
sGstζt + εt. That is, the standard ACF procedure succeeds in eliminating the endogeneity

problem that arises from input decisions depending on the firm’s own productivity, but is unable

to account for the influence of its network’s past productivity. In either case, an instrumental

variable approach would help to eliminate the problem. The key would be to find variables that are

correlated with changes to labor and capital but uncorrelated with output, particularly the input

choices and output of other firms.

15See section A for derivation.
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In the OP/LP case where the labor elasticity is consistently estimated in the first stage, the

second stage is equivalent to estimating:

∆Gỹt = αk∆
Gkt +

∞∑
s=0

λsGstζt + ∆Gεt (18)

(19)

where ỹt = yt − α̂``t. Then by estimating ∆ỹt = αk∆kt + ut under the standard assumption of

no-spillovers:

plim α̂k =
cov(∆kt,∆ỹt)

var(∆kt)
(20)

= αk

(
1− ρ

∞∑
s=1

λs
cov(∆kt, G

s
tkt−1)

var(∆kt)

)
+ ρ

∞∑
s=1

λs
cov(∆kt, G

s
t ỹt−1)

var(∆kt)
(21)

On one hand, αk is re-scaled by the covariance between the firm’s capital growth and its network’s

previous capital. If this covariance is positive, then it would shrink α̂k or even reverse its sign.

Higher ρ will increase the attenuation factor, as will λ if it is positive. When λ is negative, it leads

to an alternating series that dampens attentuation. The network structure also plays a role: when

long chains exist, Gstkt−1 > 0 even for high values of s. By contrast, a network in which firms are

paired off, so that the longest chain has length 1. Then Gstkt−1 = 0 for all s > 1 and attentuation

would be lower under this scenario.

On the other hand, there is another source of bias that depends on the covariance between the

firm’s capital growth and its network’s previous output purged of the variation from labor. When

this covariance is positive, α̂k overestimates αk, and the effects of ρ, λ and Gt now work in the

opposite direction. Depending on the signs and magnitudes of these covariances, it is possible to

obtain estimates of αk close to the true value if the two opposing effects cancel out.

Even in this simplified setting, the direction and magnitude of bias are not easily predictable

ex-ante. This means that one cannot merely apply a bias correction to estimates obtained under

standard assumptions. It motivates a modification to the estimation procedure that can flexibly

account for a variety of productivity processes and network effects. I propose a modification to the

ACF procedure that achieves this without many additional assumptions.
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4 Accounting for Spillovers

4.1 Endogenous and Contextual Effects

Assuming network exogeneity and no correlated effects, I write a more general form of the linear-

in-means equation (12) above:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + ζt (22)

Note that h(·) is unknown and can be estimated using a polynomial approximation. This allows for

flexible interactions between ωt−1, xt−1 and Gtxt−1. The key requirement is that the endogenous

effect enters linearly. This leads to the reduced form:

ωt = (I − λGt)−1h(ωt−1,xt−1, Gtxt−1) + (I − λGt)−1ζt (23)

|λ| < 1 implies that we can approximate (I − λGt)−1 by a geometric series.

ωt =
∞∑
s=0

λsGsth(ωt−1,xt−1, Gtxt−1) +
∞∑
s=0

λsGstζt (24)

This yields a consistent estimate of the conditional expectation of TFP:

E[ωt|It−1] =
∞∑
s=0

λsGsth(ωt−1,xt−1, Gtxt−1) (25)

since the resulting error term satisfies the mean independence condition:

E
[
(I − λGt)−1ζt

∣∣It−1

]
= E

[ ∞∑
s=0

λsGstζt
∣∣It−1

]
= 0

.

Note that equation (24) also indicates how λ can be identified. Given the reduced-form equation,

Gtωt can be written as:

Gtωt = Gth(ωt−1,xt−1, Gtxt−1) +

∞∑
s=1

λsGs+1
t h(ωt−1,xt−1, Gtxt−1) +

∞∑
s=0

λsGs+1
t ζt (26)

As long as productivity is sufficiently persistent, we can use the current network’s past productivity

Gtωt−1 as an instrument for the impact of network’s current productivity Gtωt. This is because

a firm is only affected by its current neighbors’ past productivity through the neighbors’ current

productivity. Therefore, λ is identified from the variation in Gtωt.

Equation (26) indicates that there are additional instruments available to identify the endoge-

nous network effect. These are more common in the network effects literature and rely on the

existence of intransitive triads in the network (Lee, 2003; Bramoullé et al., 2009). For example
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G2
tωt and G2

txt−1 is one set of possible instruments because G2
t captures the neighbors of a firm’s

neighbors, and these indirect connections affect the firm only through the firm’s direct relationships.

Note however, that the relevance of these additional instruments relies on the strength of the

endogenous effect. Whereas Gtωt−1 is a good instrument as long as productivity is persistent,

G2
tωt−1 requires both persistence and |λ| > 0 while G2

txt−1 requires that both endogenous and

contextual network effects be nonzero.

Substituting the reduced form equation into the vectorized production function:

yt = αkkt + α``t + (1− λGt)−1 [h(ϕt−1 − αkkt−1 − α``t−1,xt−1, Gtxt−1) + ζt] + εt (27)

which leads to the polynomial expansion:

yt = αkkt + α``t +
∞∑
s=0

λsGsth(ϕt−1 − αkkt−1 − α``t−1,xt−1, Gtxt−1) +
∞∑
s=0

λsGstζt + εt (28)

Accounting for network effects in the estimation procedure comes at the cost of additional

assumptions. The first, as seen above, is that the endogenous effect enters the productivity process

linearly. This would not hold if there were non-monoticities in spillovers. For instance, if firms are

likely to free-ride on very productive neighbors and are also negatively affected by very unproductive

networks, but are able to learn from moderately productive firms, then the linearity assumption

would not hold. However, there is reason to believe that linearity is, at the very least, a good

approximation for understanding the network effect and it is a common assumption in the peer

effects literature. Furthermore, one need not assume linearity if endogenous spillovers are not

contemporaneous. For example, if we assume firms are affected by the past productivity of the

previous network (Gt−1ωt−1), or the past productivity of their current network (Gtωt−1), then

either of these terms could enter h(·) non-linearly without posing a problem for identification.

Secondly, we need to assume that {Gi,jt}j∈Nit is in the firm’s information set Iit−1 at the

beginning of the period. This is consistent with a network that is fixed over time: Gt = G ∀ t =

1...T or any network formation processes that takes place at the beginning of every period before

productivity is realized. For example, in the context of production networks, if all firms choose

their suppliers at the beginning of each year, this condition would be met. The key here is the

timing: firms make production decisions based on their realized productivities inclusive of spillovers.

In addition, ωjt−1,xjt−1 ∈ Iit−1∀j ∈ Nit. That is, firms can observe the past productivity and

decisions of their neighbors. This likely holds true for buyer-supplier relationships in which buyers

often do due diligence on future suppliers, and would need to be examined in other contexts such

as geographic proximity, family networks, affiliate relationships, interlocking boards, and so on.

Third, I assume that correlations between the TFPs of connected firms are generated by

spillovers rather than common shocks. I relax this assumption in the next section.

Finally, this procedure requires that Gt is exogenous, that is, network formation and productiv-

ity are not driven by factors that firms observe but we do not. This assumption can also be relaxed

but will require the network formation process to be specified. I do so in section 5.
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4.2 Correlated Effects

Although network fixed effects alone do not bias the estimates of capital and labor elasticities, if

endogenous or contextual spillovers are also present, failing to account for common shocks will lead

to the mismeasurement of TFP. Therefore, given a productivity process with a component-year-

specific fixed effect:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + cψt + ζt (29)

cψt can be eliminated by differencing using a matrix Jt such that Jt)cψt = 0. Bramoullé et al.

(2009) suggest two ways to define Jt. The first is within local differencing by setting Jt = I −Gt.
This subtracts the mean of a firm’s neighbors’ variables from the its own. An alternative would be

global differencing, which subtracts not just the mean of a firm’s neighbors, but all the firms in the

component. That is, define Jt such that Hij,t = 1− 1
nψt

if i, j ∈ ψt and 1 otherwise.

Local differencing would suffice in an undirected network because if two firms are linked, then the

link is reported in Gij,t and Gji,t. However in directed networks, there may be some firms that are in

the same sub-component and are therefore facing component-specific shocks but
∑

j∈Nit Gij,t = 0,

because the firm only has connections coming from one direction. For example, in a study of how

customers affect the productivity of their suppliers, firm i may be a final goods producer whose

productivity generates upstream spillovers but does not supply to any downstream firms. Yet it

would be exposed to any shocks that affects the entire supply chain. If edges in Gt are classified as

links from suppliers to customers, Gij,t = 0∀j and (I−Gt)cψt = cψt . In this case, local differencing

would not eliminate the correlated effect, but global differencing would.

When Jt is chosen appropriately, then transforming equation (29) yields:

Jtωt = Jth(ωt−1,xt−1, Gtxt−1) + λJtGtωt + Jtζt

with the corresponding reduced form:

JtGtωt =
∞∑
s=0

λsJtG
s
th(ωt−1,xt−1, Gtxt−1) +

∞∑
s=0

λsJtG
s
tζt

Note that differencing the productivity process will require that the production function be

transformed as well. That is:

Jtyt =αkJtkt + α`Jt`t +
∞∑
s=0

λsJtG
s
th(ϕt−1 − αkkt−1 − α``t−1,xt−1, Gtxt−1)

+

∞∑
s=0

λsJtG
s
tζt + Jtεt (30)
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4.3 Estimation Procedure

I summarize my benchmark estimation procedure and outline modifications to deal with correlated

effects. Estimation is a two-stage process. The first stage is the same as in Ackerberg et al. (2015).

Estimate equation (6): yt = αkkt+α``t+M−1(kt, `t,mt)+εt, using a polynomial approximation.16

This yields estimates ϕ̂t = yt − ε̂t.
In the second stage, estimate equation (28) by GMM with kt, `t, ϕ̂t−1, Gtϕ̂t−1 as instruments.

Alternatively, to reduce computational complexity, one can concentrate out the parameters in h(·)
and proceed as follows. Start with guesses of the production function elasticities: α∗k, α

∗
` and

compute ω∗t = ϕ̂t − α∗kkt − α∗``t. Estimate the productivity process by 2SLS:

ω∗t = h(ω∗t−1,xt−1, Gtxt−1) + λGtω
∗
t + ut (31)

with a polynomial approximation of h(.) and [Gtωt−1, G
2
tωt−1, G

2
txt−1] as instruments for Gtωt.

Using predicted values, E[ω∗t |It−1] from the regression, compute the residual in the productivity

process:

u∗t = ω∗t − h∗(ω∗t−1,xt−1, Gtxt−1)− λ∗Gtω∗t

Then solve for a new set of (α∗k, α
∗
` ) that satisfy the sample moment conditions:

Ent[u
∗
t ◦ kt, `t−1] = 0 (32)

Iterate through all steps of the second stage until the parameters converge to values [α̂1, α̂k, α̂l].

The corresponding second stage parameters, λ̂ and the parameters in ĥ(·) are consistent estimates

of network effects. Standard errors can be obtained by residual-based or vertex bootstrapping. See

section F in the appendix for details on bootstrapping network data.

To account for correlated effects, estimate the first stage as in the benchmark procedure, and

apply the Jt transformation to all variables in the second stage.

5 Network Endogeneity

So far, I have assumed that the network is exogenous, but it is also possible that a firm’s productivity

may be correlated with how it forms relationships. This issue is reminiscent of the selection problem

in Olley and Pakes (1996) – firms are only observed if their productivity is above some threshold. In

this case, observed interfirm relationships may depend on TFP. To address this issue, I incorporate

the network selection model in Arduini et al. (2015) and Qu et al. (2017) into the benchmark

estimation procedure above.

16Like ACF, this estimation procedure can be used with other value-added production function specifications such
as the translog.
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5.1 Network Selection Model

Endogenous network formation as modeled by Qu et al. (2017) and Arduini et al. (2015) highlights

a possible link between a firm’s TFP and the nature of its network. Shocks to productivity are

correlated with the chances of meeting potential partners. For example, firms that are better able

to search for buyers or suppliers may also be more productive. In this case, a positive relationship

between a firm’s TFP and its networks’ TFP or choices would be a result of the improved search

rather than any spillovers.17

At the beginning of each period, firms i and j consider the surplus of a link Vi(Aij,t). Both

firms want to form a link if Vi(Aij,t = 1) − Vi(Aij,t = 0) > 0.18 I parametrize this difference in

surplus as:

Vi(Aij,t = 1)− Vi(Aij,t = 0) = Uijt(γ) + ξijt

where ξijt is i.i.d and follows a logistic distribution.

Uijt(γ) = γ1 + zitγi + zjtγj + zijtγij + γhHijt (33)

Note that despite the slight abuse of notation, γi, γj, γij are not random coefficients. They are

parameters whose subscripts denote that they correspond to i, j or the dyad’s characteristics.

zit may include ωit−1, xit−1 and other variables such as industry that influence a firm’s rela-

tionship decision but may have no direct impact on productivity. zijt usually includes the distance

between i and j’s characteristics: |zit − zjt| or some other dyad-specific measures, such as the

physical distance between the firms, industry input-output shares, etc. A negative coefficient on

|zit − zjt| indicates that firm i wants to match with firms that are similar. Hijt measures past

linkages; a large and positive γh indicates that firm i prefers to stick with its previous partners.

Past linkages can be specified broadly; for instance, Hijt = Aij,t−1 would mean that firm i only

considers linkages from the previous period, while Hijt = 1 (
∑m

s=1Aij,t−s > 0, m ≤ t) measures

whether i and j were connected in any of the last m periods.19

The probability that a link Aij,t forms is given by:

P (Aij,t = 1 | It−1) = P (Uijt(γ) + ξijt > 0) =
eUijt(γ)

1 + eUijt(γ)

17Other studies such as Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016) model network endogene-
ity as a correlation between unobserved variables in the network selection model and the error term of the outcome
equation. The interpretation differs; in this setting selection would be driven by unobserved synergies such as common
business philosophies. If these factors are also correlated with productivity, then estimated spillovers would capture
the effect of assortativity in these unobserved characteristics (see Serpa and Krishnan (2018)) for an application to
productivity spillovers. I choose the Arduini et al. (2015) model for two reasons. First, it allows me to explicitly
highlight the dual role that productivity may play in search and interfirm spillovers. Secondly, the reduction of the
problem to a selection correction term preserves the usual structure of the estimator, while the Goldsmith-Pinkham
and Imbens (2013) and Hsieh and Lee (2016) relies on Bayesian estimation of a full likelihood model.

18This model can apply to both directed and undirected networks. For example, in a buyer-supply network, the
the surplus from i supplying j would be considered differently from the reverse direction.

19There are alternative models such as Graham (2017) that include firm-year fixed effects in the dyadic regression
model. Estimation of such models will depend on the sparsity of the network.
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The specified model, coupled with a logistic distribution implies that, conditional on firm and

dyad characteristics, historical connectivity, and the unobserved ξt, the probability that i wants to

form a link with j is independent of its decision to connect with some other firm k. While this

may be restrictive, it is analytically and computationally tractable, and still manages to capture

important features of real-world networks.

For example, this model allows for the possibility that a firm can choose multiple partners; i

need not prefer j to all other firms, it just needs to prefer matching with j to not matching. This

is useful for characterizing production networks, in which a non-negligible number of firms trade

with more than one partner. As in Goldsmith-Pinkham and Imbens (2013), this model can also

accommodate some interdependence in the linking decision through the choice of variables such as

the number of links in the previous period, whether the firms had neighbors in common etc.

Network endogeneity arises from the relationship between ξijt and the error term in the pro-

ductivity process, ζit. Let ξ
′
it = {ξijt}ntj 6=i be a row vector of the error terms from all the dyadic

regressions with links originating from i. (ζit, ξ
′
it) ∼ i.i.d.(0,Σζξ) where Σζξ =

(
σ2
ζ σ

′
ζξ

σζξ Σξ

)
is pos-

itive definite, σ2
ζ is a scalar, σζξ is an nt − 1 column vector of covariances, and Σξ = σ2

ξInt−1.

Stacking all the ξit’s in a matrix:

Ξt =


ξ
′
1t
...

ξ
′
ntt


then the error term in the productivity process can be written as:

ζit = Ξtδ + νt

where δ = Σ−1
ξ σζξ, νt is independent of ξit and σ2

ν = σ2
ζ − σ

′
ζξΣ
−1
ξ σζξ. Therefore, the productivity

process becomes:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + Ξtδ + νt (34)

Gt is endogenous when σζξ 6= 0 and the selectivity bias is equal to Ξtδ.

5.2 Accounting for Selection

To the estimate model, assume ζit is normally distributed. Then Arduini et al. (2015) shows that

the selectivity bias can be controlled for using a Heckman-type mills ratio:

µit =

Nt∑
j 6=i

gij,t
φ(Φ−1(p))

Φ(Φ−1(p))
+ (1− gij,t)

φ(Φ−1(p))

1− Φ(Φ−1(p))
(35)

=

Nt∑
j 6=i

gij,t
φ(Φ−1(p))

p
+ (1− gij,t)

φ(Φ−1(p))

1− p
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where p = P (Aij,t = 1 | It−1), and φ and Φ are the probability and cumulative density functions

for a standard normal variable. The i.i.d assumption on ξijt’s dispenses with the need to estimate

all Nt− 1 parameters in δ. Instead, due to the summation above, one only has to estimate a single

parameter δ =
σζξ
σ2
ξ

.

5.3 Estimation Procedure

Incorporating the selection model is similar to the Olley and Pakes (1996) correction for attrition.

The first stage of my benchmark procedure is unchanged with the estimation of ϕ̂it and ε̂it using

the proxy variable. In the second stage, starting with the initial guesses of the labor and capital

coefficients (α∗k, α
∗
` ), compute ω∗it−1 = ϕ̂it−1 − α∗kkit−1 − α∗``it−1.

Using ω∗it−1 and other variables that could determine the observed links between firms, estimate

the selection model in equation (33) to obtain γ∗. Next, compute the predicted probabilities

p∗ = eUijt(γ
∗)

1+eUijt(γ
∗) and the selection correction term µ∗it =

∑Nt
j 6=i gij,t

φ(Φ−1(p∗))
p∗ + (1 − gij,t)φ(Φ−1(p∗))

1−p∗ .

Include this correction term as one of the explanatory variables in the productivity process equation:

ω∗t =
∞∑
s=0

λsGsth(ω∗t−1,xt−1, Gtxt−1) + δ
∞∑
s=0

λsGstµ
∗
it + ut (36)

The resulting residuals are now purged of the omitted variable bias arising from network selection

and can be used to construct the sample moments in (31) for identification of the elasticities.20

6 Monte Carlo Experiments

I conduct three sets of experiments to assess the performance of the standard ACF estimator and

my modified procedure when various types of network effects are present. In the first set of ex-

periments, I examine how each type of network effect individually affects the bias and efficiency

of capital and labor elasticity estimates obtained using the ACF procedure. Next, I demonstrate

how my modified procedure performs when endogenous, contextual and correlated effects are cu-

mulatively present and consider the sensitivity of the estimates from my benchmark procedure to

misspecification. Finally, I compare the performance of ACF and my benchmark procedure as the

size of the endogenous effect, the persistence of productivity and the density of the network vary.

For all three experiments, I draw a balanced sample of 1000 firms over 10 years. I use a

Cobb-Douglas production function in logs:

yit = α``it + αkkit + ωit + εit

20In principle, the selection model would be re-estimated for each value of ω∗it−1 as the values (α∗k, α
∗
` ) are updated

in each iteration. However, this significantly increases the computational cost of the procedure. As long as the initial
guesses of the elasticities, such as those obtained from an OLS regression, are reasonably close to their true values
measurement error in the lagged TFP variable should not have an outsized effect on the estimates of the selection
correction term. In my Monte Carlo simulations, results were quite similar when selection was estimated only once
and when it was re-estimated in each iteration.
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where εit ∼ N (0, σ2
ε). I set α` = 0.6, αk = 0.4 and σ2

ε = 1.21 The productivity process varies

depending on the experiment. To avoid the impact of arbitrary initial values, I simulate 20 periods

and discard the first 10.

To induce variation in cluster (component) size and the length of supply chains, I split the firms

into four industries with 400, 300, 200, and 100 firms in the first, second, third and fourth industries

respectively and construct an inter-industry trade structure as follows: Industry 1 sells 17, 33 and

44 percent of its output to industries 2, 3 and 4 respectively. 2 sells to 50 percent each to 3 and

4, while industry 3 sells all its output to 4. The fourth industry sells nothing to other firms. This

structure is fixed over time, and does not represent the actual network but is a measure of industry

compatibility that I use to generate both exogenous and endogenous networks as described below.

6.1 Experiment 1: Bias in Standard ACF estimates due to Network Effects

I simulate five data generating processes (DGPs) to demonstrate the bias in standard ACF estimates

of the input elasticities from each type network effect—endogenous, contextual and correlated—and

network endogeneity separately.

The productivity process is:

ωt = β1ι+ ρωt−1 + βxxt + λGtωt + βx̄Gtxt + cψt + ζt (37)

where ζit ∼ N (0, σ2
ζ ). To induce a non-linear relationship between x and capital, I generate it

according to x = 0.5 ln(
√
Kt−1) + x̃, where x̃ ∼ N (−2, σ2

x̃). Since it depends on Kt−1, it is not

correlated with ζt. I set β1 = 0.5, ρ = 0.6, βx = 0.4, σ2
ζ = 1.25, and σ2

x̃ = 5.

For DGPs 1 to 4, I generate an exogenous directed network in each period by randomly assigning

links with probability P (Aijt = 1) =
indshareij
indsizej

where indshareij is the compatibility of i and j’s

industries obtained from the industry compatibility matrix described above, while indsizej is the

number of firms in j’s industry. DGP 1 has no network effects (λ = 0, βx̄ = 0, cψt = 0) and

exogenous network formation, and ACF estimates should be consistent. DGP 2 features only the

endogenous effect (λ = 0.3, βx̄ = 0, cψt = 0) while DGP 3 features only the contextual effect

(λ = 0, βx̄ = 0.3, cψt = 0). In DGP 4, I draw component fixed effects in each period from a normal

distribution with a mean of 1 and a standard deviation of 1 (λ = 0, βx̄ = 0, cψtN (1, 1)). For DGP

5, I start with an exogenous network in the first period, then simulate future networks using the

model in section 5 with the coefficient of the selection term δ =
σζξ
σ2
ξ

= 0.003, while there are no

other network effects (λ = 0, βx̄ = 0, cψt = 0).

I estimate the production function using standard ACF with a second-degree polynomial ap-

proximation in the first and second stages. The results are shown in table 3. The largest bias

comes from the presence of an endogenous effect. It leads to a capital coefficient estimate that is

almost 25% higher than the true value. In comparison, a contextual effect of the same size has a

negligible impact on the capital coefficient. As expected, correlated effects reduce precision but do

21See section B for further details on the Monte Carlo setup.
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not have a sizable impact on bias. In the absence of any other network effects, endogenous network

formation has no impact on bias or efficiency of the estimated input elasticities. Therefore, of all

the network effects, ignoring endogenous spillovers introduces the greatest bias in the production

function elasticities.

Table 3: Bias due to Network Effects with Standard ACF Procedure

DGP
α` αk

True values 0.6 0.4

No network effects Mean 0.599 0.4
Std. Dev. (0.025) (0.061)

Endogenous Effect (λ = 0.3) Mean 0.596 0.495
Std. Dev. (0.032) (0.066)

Contextual Effect (βx̄ = 0.3) Mean 0.598 0.414
Std. Dev. (0.04) (0.063)

Correlated Effect (cψt ∼ N (1, 1)) Mean 0.58 0.38
Std. Dev. (0.171) (0.271)

Endogenous Network

(
σζξ
σ2
ξ

= 0.003

)
Mean 0.6 0.391

Std. Dev. (0.014) (0.082)

Based on 1000 replications.This table reports production function elasticites obtained using the
procedure in Ackerberg et al. (2015). Each row includes a separate network effect in the law of
motion on productivity.

6.2 Experiment 2: Comparison of Estimates from Standard and Modified ACF

Procedures

Next, I compare the performance my estimator against standard ACF in table 4 using four DGPs.

The Monte Carlo setup is essentially the same as in experiment 1 above. However, I introduce

network effects cumulatively rather than individually. DGP 1 favors the ACF procedure with no

network effects and exogenous network formation, while DGP 2 introduces both endogenous and

contextual network effects. DGP 3 is similar to the second DGP but with the addition of correlated

effects, while DGP 4 has all the previous network effects with endogenous network formation.

I consider 4 estimators. The first is a standard ACF that assumes no network effects. Using the

TFP measure obtained from ACF, I estimate network effects with the generalized 2SLS procedure

described in section 4.3. This is the approach typically used in empirical studies of productivity

spillovers. ACF-N is my modified procedure that jointly estimates productivity and network ef-

fects. ACF-ND uses global differencing to eliminate correlated effects, and ACF-NDS accounts for
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selection using the network formation model in section 5.3. All estimators use a second-degree

polynomial in capital, labor and materials in the first stage, and a linear productivity process in

the second.

Table 4: Comparison of Estimates from Standard ACF and Modified ACF Procedures

DGP Estimator
Elasticities Productivity Process Coefficients

α` αk ρ βx βx̄ λ
σζξ
σ2
ξ

DGP 1

True values 0.6 0.4 0.6 0.4 0.0 0.0 0.0

ACF Mean 0.599 0.4 0.6 0.401 0. -0.001
Std. Dev. (0.025) (0.061) (0.015) (0.026) (0.009) (0.01)

ACF-N Mean 0.602 0.392 0.601 0.398 0. -0.001
Std. Dev. (0.018) (0.061) (0.016) (0.019) (0.009) (0.01)

ACF-ND Mean 0.603 0.389 0.601 0.397 -0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.024) (0.01) (0.011)

ACF-NDS Mean 0.603 0.39 0.601 0.397 -0. 0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.025) (0.01) (0.012) (0.002)

DGP 2

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.595 0.516 0.556 0.402 0.092 0.332
Std. Dev. (0.035) (0.07) (0.017) (0.035) (0.016) (0.042)

ACF-N Mean 0.601 0.401 0.596 0.399 0.121 0.242
Std. Dev. (0.018) (0.046) (0.016) (0.018) (0.013) (0.026)

ACF-ND Mean 0.602 0.398 0.595 0.397 0.118 0.249
Std. Dev. (0.028) (0.055) (0.016) (0.028) (0.014) (0.026)

ACF-NDS Mean 0.602 0.396 0.596 0.397 0.115 0.257 -0.004
Std. Dev. (0.027) (0.055) (0.016) (0.028) (0.014) (0.026) (0.002)

DGP 3

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.616 0.496 0.479 0.362 0.121 0.357
Std. Dev. (0.169) (0.417) (0.171) (0.161) (0.102) (0.496)

ACF-N Mean 0.741 0.162 0.514 0.257 0.082 0.222
Std. Dev. (0.154) (0.215) (0.269) (0.154) (0.072) (0.62)

ACF-ND Mean 0.614 0.368 0.605 0.385 0.109 0.266
Std. Dev. (0.032) (0.052) (0.017) (0.032) (0.012) (0.018)

ACF-NDS Mean 0.614 0.368 0.605 0.385 0.108 0.269 -0.002
Std. Dev. (0.032) (0.052) (0.018) (0.032) (0.012) (0.018) (0.002)

DGP 4

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.003

ACF Mean 0.607 0.35 0.603 0.374 0.128 0.255
Std. Dev. (0.138) (0.239) (0.147) (0.166) (0.109) (0.122)

ACF-N Mean 0.705 0.183 0.637 0.291 0.067 0.236
Std. Dev. (0.137) (0.213) (0.184) (0.142) (0.056) (0.2)

ACF-ND Mean 0.619 0.368 0.61 0.383 0.091 0.281
Std. Dev. (0.073) (0.116) (0.056) (0.07) (0.023) (0.037)

ACF-NDS Mean 0.621 0.362 0.612 0.38 0.09 0.28 0.001
Std. Dev. (0.078) (0.129) (0.064) (0.076) (0.026) (0.037) (0.002)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard
procedure, while N, D, and S indicate modifications to account for network effects, network differencing, and network
selection respectively. Data generating processes are outlined above (see appendix B for details). DGP1 has no
network effects, DGP2 has correlated and endogenous effects, DGP3 includes correlated, endogenous and network
fixed effects, while DGP4 features all 3 network effects and an endogenous network formation process.
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Under DGP 1, all estimators perform well when estimating both the production function and the

productivity process. Furthermore, precision is not diminished. It is important to note that allowing

for spillovers under the modified procedure does not introduce spurious network effects. With the

combined impact of endogenous and contextual effects in DGP 2, ACF significantly overestimates

the capital coefficient but still gives reasonable estimates of network effects in the productivity

process, although the endogenous effect is slightly overestimated. All three modified procedures

yield estimates of the input elasticities that are close to the truth but slightly underestimate λ.

When there are network fixed effects, my benchmark procedure, ACF-N overestimates the labor

coefficient and underestimates capital elasticity, the persistence parameter, and the endogenous

effect. In these respects, ACF performs better because when correlated effects are unaccounted for,

all network terms containing Gt introduce bias because they are correlated with the error term.

Differencing improves both consistency and precision, with standard deviations up to 60 times

smaller than under ACF and ACF-N. Bias due to endogenous network formation is negligible,

presumably because the coefficient
σζξ
σ2
ξ

on the omitted variable, is small. Other than reduced

precision when compared with ACF-ND, estimates of the productivity process and input elasticities

are not different from when selection is accounted for with ACF-NDS.
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6.3 Experiment 3: Effect of Network Density on Bias and Precision

Since the first experiment shows that most important source of bias is the endogenous effect, I further

explore how precision and consistency vary with network density in the presence of an endogenous spillover.

I employ a quadratic AR1 process for productivity:

ωt = β1 + ρ1ωt−1 + ρ2ω
2
t−1 + λGtωt + ζt (38)

where ζit ∼ N (0, σ2
ζ ). I set β1 = 0.5, ρ2 = −0.01, and σ2

ζ = 5. The quadratic term is necessary to explore

high values of λ and ρ1. If productivity is persistent and the endogenous spillover is also large, then

simulated values of productivity grow quite large for some firms, and the resulting investment series soon

tends to infinity for highly productivity firms.22. The quadratic term serves as a dampener to control the

size ωt in the simulation.23 Additionally, it allows for the comparison of ACF and my modified procedure

when the productivity is process not linear.

To vary network density, I draw random exogenous networks using Erdős and Rényi (1960) graphs,

also known as binomial graphs. Firms are edges are formed Aijt
i.i.d.∼ Bern(p) and the density of the graph

is equal to the probability of an link forming between two firms, p. This class of graphs has several features

worth noting. First, intransitivity rises as the density falls. This is an advantage because intransitivity

helps with identification of the endogenous network effect, so we can expect more precise estimates as the

network gets more sparse. Secondly, when p > 1
Nt

, a giant component emerges that contains more vertices

than any other component of the network. In my Monte Carlo experiments, this means that for graphs

with density > 0.001 the infinite series of terms Gst will go to zero much more slowly than with density

≤ 0.001. Therefore, one would expect the potential bias to be greater as density increases, particularly

once it crosses the 0.001 threshold. However, it is worth noting that the resulting degree distribution is

binomial B(Nt − 1, p), which is approximately normal whereas buyer-supplier networks have empirically

been found to follow a Pareto (power-law) degree distribution (Bernard and Moxnes, 2018).

Table 5 shows the results of varying network density. ACF estimates of the capital elasticity appear

unbiased for densities ≤ 0.001 and increases to over 50% of the true value for densities above 0.001.

Estimates of λ increase with density while ρ1 moves in the opposite direction. In comparison, my bench-

mark procedure ACF-N provides stable and consistent estimates of both the elasticities and productivity

process at most densities. When the network is very sparse, however, my procedure underestimates λ

and does so with less precision because the instrument G2
tωt−1 is weaker when there are fewer triads in

the network.

In section C in the appendix, I also examine how my approach performs as the persistence of pro-

ductivity and the size of the endogenous network effect vary. Unsurprisingly, my procedure yields more

consistent and precise estimates as productivity gets more persistent, increasing the relevance of Gtωt−1 as

an instrument, and as the endogenous spillover gets larger, raising the relevance of the G2
tωt−1 instrument.

Importantly, even when λ = 0, my procedure still yields consistent estimates as long as ρ is sufficiently

large.

22See details on optimal investment in section B.5 in the appendix
23It is also worth mentioning that in empirical applications, estimating flexible forms of the productivity process may be

necessary. Otherwise, linearity of the Markov process may force estimates of λ to be small or negative.
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Table 5: Effect of Sparsity on Bias and Precision (Quadratic AR1)

Density Estimator

Elasticities Productivity Process Coefficients

α` αk β1 ρ1 ρ2 λ

0.6 0.4 0.5 0.8 -0.01 0.3

0.0001

ACF 0.603 0.358 -0.125 0.809 -0.01 0.087

(0.024) (0.239) (2.369) (0.216) (0.003) (0.106)

ACF-N 0.617 0.413 -0.23 0.76 -0.01 0.226

(0.057) (0.165) (2.845) (0.196) (0.022) (0.109)

0.0003

ACF 0.604 0.359 0.122 0.81 -0.01 0.113

(0.024) (0.216) (1.975) (0.19) (0.003) (0.12)

ACF-N 0.632 0.381 0.379 0.764 -0.011 0.241

(0.093) (0.113) (1.456) (0.195) (0.038) (0.238)

0.0005

ACF 0.605 0.377 0.209 0.798 -0.01 0.132

(0.024) (0.195) (1.691) (0.169) (0.003) (0.126)

ACF-N 0.641 0.371 0.412 0.753 -0.009 0.25

(0.106) (0.113) (1.226) (0.217) (0.034) (0.097)

0.0007

ACF 0.606 0.387 0.271 0.791 -0.01 0.159

(0.027) (0.182) (1.509) (0.158) (0.003) (0.137)

ACF-N 0.646 0.362 0.51 0.745 -0.007 0.243

(0.116) (0.116) (0.506) (0.237) (0.046) (0.1)

0.0009

ACF 0.606 0.411 0.266 0.771 -0.01 0.18

(0.03) (0.168) (1.359) (0.147) (0.004) (0.145)

ACF-N 0.635 0.371 0.532 0.767 -0.011 0.252

(0.101) (0.098) (0.308) (0.2) (0.037) (0.085)

0.001

ACF 0.606 0.423 0.243 0.761 -0.01 0.196

(0.032) (0.161) (1.295) (0.147) (0.007) (0.152)

ACF-N 0.63 0.377 0.539 0.778 -0.009 0.225

(0.09) (0.088) (0.305) (0.203) (0.031) (1.04)

0.003

ACF 0.602 0.617 -0.343 0.523 -0.017 0.261

(0.053) (0.114) (1.261) (0.137) (0.011) (0.184)

ACF-N 0.611 0.389 0.585 0.815 -0.01 0.283

(0.038) (0.049) (0.256) (0.06) (0.009) (0.035)

0.005

ACF 0.605 0.637 -0.109 0.462 -0.019 0.312

(0.067) (0.138) (0.987) (0.161) (0.017) (0.201)

ACF-N 0.608 0.388 0.509 0.818 -0.01 0.291

(0.03) (0.057) (0.298) (0.05) (0.007) (0.042)

0.007

ACF 0.606 0.639 -0.405 0.47 -0.026 0.545

(0.073) (0.149) (13.879) (0.694) (0.207) (6.696)

ACF-N 0.607 0.385 0.437 0.818 -0.01 0.294

(0.027) (0.068) (0.339) (0.053) (0.002) (0.027)

0.009

ACF 0.606 0.638 0.132 0.448 -0.018 0.339

(0.073) (0.154) (2.354) (0.217) (0.05) (1.188)

ACF-N 0.606 0.386 0.405 0.815 -0.01 0.302

(0.03) (0.077) (0.393) (0.06) (0.005) (0.175)

0.01

ACF 0.606 0.639 0.011 0.452 -0.019 0.388

(0.072) (0.153) (1.8) (0.2) (0.046) (0.925)

ACF-N 0.606 0.386 0.404 0.815 -0.01 0.301

(0.031) (0.078) (0.404) (0.061) (0.005) (0.14)

0.03

ACF 0.605 0.644 -0.23 0.478 -0.011 0.317

(0.069) (0.149) (5.307) (1.216) (0.238) (2.909)

ACF-N 0.605 0.387 0.417 0.813 -0.01 0.298

(0.032) (0.083) (0.398) (0.064) (0.004) (0.061)

0.05

ACF 0.606 0.643 0.054 0.414 -0.024 0.446

(0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N 0.605 0.388 0.417 0.813 -0.01 0.299

(0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.07

ACF 0.606 0.643 0.005 0.423 -0.022 0.419

(0.073) (0.154) (1.994) (0.457) (0.085) (1.053)

ACF-N 0.604 0.388 0.42 0.813 -0.01 0.297

(0.03) (0.084) (0.4) (0.064) (0.003) (0.049)

0.09

ACF 0.606 0.643 0.001 0.426 -0.021 0.413

(0.071) (0.154) (1.774) (0.406) (0.074) (0.928)

ACF-N 0.604 0.388 0.42 0.813 -0.01 0.297

(0.03) (0.084) (0.401) (0.063) (0.003) (0.049)

0.1

ACF 0.606 0.642 -0.003 0.425 -0.021 0.417

(0.073) (0.157) (1.812) (0.417) (0.077) (0.952)

ACF-N 0.604 0.388 0.42 0.814 -0.01 0.296

(0.028) (0.083) (0.403) (0.061) (0.003) (0.032)

0.3

ACF 0.605 0.644 -0.048 0.437 -0.019 0.388

(0.07) (0.15) (1.033) (0.184) (0.025) (0.454)

ACF-N 0.603 0.389 0.422 0.813 -0.01 0.296

(0.027) (0.084) (0.409) (0.062) (0.003) (0.032)

0.5

ACF 0.606 0.644 -0.054 0.435 -0.019 0.392

(0.072) (0.153) (1.048) (0.189) (0.027) (0.468)

ACF-N 0.604 0.389 0.421 0.813 -0.01 0.296

(0.027) (0.083) (0.412) (0.062) (0.003) (0.032)

0.7

ACF 0.607 0.643 -0.025 0.427 -0.021 0.416

(0.074) (0.156) (1.63) (0.365) (0.066) (0.827)

ACF-N 0.604 0.388 0.42 0.814 -0.01 0.296

(0.027) (0.084) (0.413) (0.062) (0.003) (0.032)

0.9

ACF 0.607 0.642 -0.054 0.435 -0.019 0.392

(0.074) (0.156) (1.063) (0.189) (0.027) (0.478)

ACF-N 0.604 0.388 0.422 0.813 -0.01 0.297

(0.029) (0.085) (0.414) (0.063) (0.004) (0.052)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF
denoting the standard procedure and ACF-N indicating the modified procedure to account
for network effects. Networks are exogenous erdos-renyi (binomial) graphs with densities
as shown. The data-generating process for productivity is quadratic AR1 with endoge-
nous network effects. True values of the parameters are at the top of the table. Standard
deviations are in parentheses.
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7 Extensions

7.1 Gross Production Functions

So far, I have only considered a structural value-added production function, which often requires

the assumption that the production function is Leontief with respect to intermediate inputs. In

this section I consider a framework exploiting first order conditions on intermediate input choices

as in Gandhi, Navarro, and Rivers (2020, GNR hereafter). Under similar assumptions as in the

proxy variable approach above, the standard GNR procedure can be modified to jointly estimate

network effects and productivity.

Like ACF, the GNR methodology assumes that TFP enters the production function in a Hicks-

neutral fashion. However, intermediate inputs now enter directly into the production function:

Yt = F (Lt,Kt,Mt)e
ωt+εt

⇐⇒ yt = f(`t, kt,mt) + ωt + εt (39)

For simplicity, assume that materials are flexible while both labor and capital have dynamic impli-

cations.

The procedure consists of two stages. The first stage exploits first order conditions from profit

maximization to estimate the elasticity of intermediate inputs with respect to output. Given the

production technology above, the firm chooses materials to maximize profits:

max
Mt

PtE[F (Lt,Kt,Mt)e
ωt+εt ]− PMt Mt (40)

where Pt and PMt are the prices of output and materials respectively. The static first order condition

with respect to materials is:

Pt
∂

∂Mt
F (Lt,Kt,Mt)e

ωtE = PMt (41)

where E ≡ E[eεt |It] = E[eεt ] which relies on the assumption that the error terms are unconditionally

independent.24

∂

∂Mt
F (Lt,Kt,Mt)e

ωtE =
PMt
Pt

Mt

Yt

∂

∂Mt
F (Lt,Kt,Mt)e

ωtE =
PMt Mt

PtYt

ln

(
∂

∂mt
f(`t, kt,mt)

)
− εt + ln(E) = st (42)

24See Gandhi et al. (2020) for details on estimation under a relaxed conditional independence assumption.
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where st ≡ ln(
PMt Mt

PtYt
) is the log of the intermediate input expenditure share of revenue.

E[εt | It] = 0 =⇒ E[st | It] = ln

(
∂

∂mt
f(`t, kt,mt)

)
+ ln(E) (43)

LetDE(`t, kt,mt) ≡
∂

∂mt
f(`t, kt,mt)×E . Then given the moment of εt in (43) above, lnDE(`t, kt,mt)

can be estimated by non-linear least squares regression of the materials expenditure share on the

log of a polynomial in labor, capital and materials. Furthermore:

εt = lnDE(`t, kt,mt)− st =⇒ eεt = DE(`t, kt,mt)e
−st

E =E[eεt ] = E[DE(`t, kt,mt)e
−st ] (44)

Using the estimates of DE from the share regression, we can replace the moment in (44) with

its empirical equivalent and compute the constant E . This enables us obtain an estimate of the

materials elasticity:

D(`t, kt,mt) =
∂

∂mt
f(`t, kt,mt) =

DE(`t, kt,mt)

E
(45)

The second stage of GNR relies further assumptions on the productivity process to estimate

the rest of the production function. By the fundamental theorem of calculus:∫
∂

∂mt
f(`t, kt,mt)dmt = f(`t, kt,mt) + C(`t, kt) (46)

The goal is to estimate C(·) since we can compute
∫ ∂

∂mt
f(`t, kt,mt)dmt using D(`t, kt,mt) from

the first stage. By substituting for f(`t, kt,mt) using equation (39):∫
∂

∂mt
f(`t, kt,mt)dmt = yt − ωt − εt + C(`t, kt)

Yt ≡ yt −
∫

∂

∂mt
f(`t, kt,mt)dmt − εt = −C(`t, kt) + ωt (47)

It is at this point that the assumption on the productivity evolution process comes into play. GNR

maintains the same first-order Markov assumption as ACF:

ωt = h(ωt−1) + ηt, where E[ηt | It−1] = 0 (48)

ωt−1 = Yt−1 + C(`t−1, kt−1)

=⇒ Yt = −C(`t, kt) + h(Yt−1 + C(`t−1, kt−1)) + ηt (49)

We can estimate C(·) and h(·), normalizing the former to contain no constant, based on uncondi-
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tional moments derived from E[ηt | It:

E[ηt`
τ`
t k

τk
t ] = 0

E[ηtYτYt−1] = 0
(50)

where τ`, τk and τY are determined by the degrees of the polynomial approximations for C(·) and

h(·) respectively.

7.1.1 Accounting for Network Effects

As with the modified ACF approach, I maintain the same assumptions and procedure in the first

stage of GNR. Network effects come into play at the second stage when the law of motion on

productivity is required for identification.

Note however, that by maintaining the same assumptions in the first stage, I do not account

for ways in which the firm’s network could potentially influence its intermediate input choices. For

now, I focus specifically on network effects that operate through productivity spillovers and leave

the implications for materials demand for future work.

I replace the productivity evolution process in (48) with one that allows for a linearly additive

endogenous network effect:25

ωt = h(ωt−1) + λGtωt + ζt where E[ζt | It−1] = 0

=⇒ ωt =

∞∑
s=0

λsGsth(ωt−1) +
∞∑
s=0

λsGstζt

The equation (49) becomes:

Yt = −C(`t, kt) +

∞∑
s=0

λsGsth(Yt−1 + C(`t−1, kt−1)) +

∞∑
s=0

λsGstζt (51)

This yields an additional set of moments from which the endogenous effect λ can be identified:

E[ζtG
s
tY

τY
t−1] = 0 where s ≥ 1 (52)

7.2 Alternative Network Effect Specifications

The modified ACF procedure introduced in section 4 can accommodate specifications of the produc-

tivity process that account for other ways in which spillovers may occur. In this section, I consider

some of these specifications, and how they affect the estimator and what additional assumptions

are needed, if any.

25For clarity of exposition, I leave out contextual and correlated effects, but they can be included in much the same
way as with ACF.
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7.2.1 Local-Aggregate Endogenous Effect

The linear-in-means equation considered so far is also known as the local-average model because

it assumes that the average productivity and characteristics of a firm’s neighbors is the key source

of spillovers. Another model is the local-aggregate model as in Liu and Lee (2010) and Liu et al.

(2014), that considers the sum rather than the average. That is:

ωt = h(ωt−1,xt−1, Atxt−1) + λAtωt + ζt (53)

where At is the adjacency matrix. This model has different implications from the local-average

model. There are also hybrid models that include local-average contextual effects and local-

aggregate endogenous effects:

ωt = h(ωt−1,xt−1, Gtxt−1) + λAtωt + ζt (54)

or both local-average and local-aggregate endogenous effects:

ωt = h(ωt−1,xt−1, Gtxt−1) + λAAtωt + λGGtωt + ζt (55)

See Liu and Lee (2010) and Liu et al. (2014) for further discussion of the conditions under which

these network effects are identified. In general as long as the matrix inversion conditions to obtain

a reduced form and the information set conditions hold, my benchmark procedure only needs to

be modified by changing the network matrix where necessary.

7.2.2 Heterogeneous Network Effects

So far, my model of network effects has assumed homogeneous spillovers. However, the model can

account for a finite set of heterogeneous network effects. If I partition the network into a finite set

of B groups such as buyers and suppliers, industries, or based on firm size, then I can estimate:

ωt = h(ωt−1,xt−1, {Gb,txt−1}Bb=1) +

B∑
b=1

λbGb,tωt + ζt (56)

Note that xt−1, {Gb,txt−1}Bb=1ωt = λGtωt where λ is a weighted average of the heterogeneous

effects. Therefore, my benchmark procedure can still be used to consistently estimate TFP with-

out any modification. Afterwards, the heterogeneous network effect parameters can be obtained

using the specification above. Dieye and Fortin (2017) and Patacchini et al. (2017) discuss the

identification conditions and estimation procedures for this model in greater detail.
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8 Results

In this section, I use my empirical framework to examine the magnitude of endogenous productivity

spillovers through vertical relationships in the US production network. I explore how these spillovers vary

over time, industry and firm size and document substantial heterogeneity in the sources and recipients of

network effects.

I estimate a gross production function with a linear intermediate input share equation and a second-

degree polynomial in capital and labor in the second stage.26 I also estimate a value-added Cobb Douglas

production function with materials as the proxy variable and a second-degree polynomial in the first stage.

In both specifications, I assume a linear productivity process that includes an endogenous network effect

and recover both production function elasticities and productivity spillovers from my modified approach.

Because spillovers imply that TFP is jointly determined for linked firms across industries, the production

function cannot be estimated separately for each industry. Therefore, I control for industry and year fixed

effects in the productivity equation. In addition, due to the observed variation in the network structure

over time, I estimate both specifications separately for each decade in the sample.

I compare my estimates with results from standard GNR and ACF approaches with industry and

year fixed effects in the productivity equation for comparability. Because standard approaches do not

yield estimates of productivity spillovers, I use TFP estimates from these procedures in a second stage.

To obtain network effect coefficients, I apply the generalized 2SLS (G2SLS) approach in Lee (2003) and

Bramoullé et al. (2009). In the first step, I estimate λ∗ by 2SLS using [Gtωt−1, G
2
tωt−1] as instruments for

Gtωt. I compute E∗[Gtωt|It−1] using the reduced form equation in (13). This is the feasible estimate of

the best instrumental variable (IV) for Gtωt. Then I estimate 2SLS again, this time with E∗[Gtωt|It−1]

instrumenting for Gtωt. To eliminate component-year fixed effects, I apply global differencing described

in section 4.2 to both standard and modified procedures.

8.1 Production Function Elasticities

Tables 6 and 7 report the estimated elasticities of output with respect to inputs from gross output

and value-added production functions, respectively. GNR/ACF refer to the standard procedures, GNR-

N/ACF-N denote my modified approach that accounts for endogenous productivity spillovers, and GNR-

ND/ACF-ND indicate specifications that account for both endogenous network effects and component-

year fixed effects. Because I assume that the network does not affect intermediate input demand in

the gross output specification, the elasticity of output with respect to materials does not vary across

specifications.

Estimated capital and labor elasticities are also quite similar with and without accounting for network

effects. The relative importance of each input varies over time; in the gross output specification, the

elasticity of output with respect to labor falls from about 0.49 between 1977-1986 by 0.26 in the 2007-

2016 period. By contrast, results from in the value-added specification move in the opposite direction,

with labor elasticity rising from about 0.62 to 0.68 over the same time horizon.

26This specification implies a translog production function.
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Table 6: Gross Production Function Elasticities

Period Estimator Capital Labor Materials

1977-1986
GNR 0.280 0.489 0.341
GNR-N 0.271 0.497 0.341
GNR-ND 0.279 0.493 0.341

1987-1996
GNR 0.267 0.382 0.489
GNR-N 0.266 0.383 0.490
GNR-ND 0.271 0.379 0.490

1997-2006
GNR 0.159 0.278 0.529
GNR-N 0.173 0.269 0.529
GNR-ND 0.170 0.273 0.529

2007-2016
GNR 0.183 0.263 0.508
GNR-N 0.194 0.257 0.508
GNR-ND 0.191 0.262 0.508

All
GNR 0.210 0.321 0.500
GNR-N 0.219 0.318 0.500
GNR-ND 0.221 0.317 0.500

This table reports the average input elasticities from a gross output pro-
duction function estimated on US firms in Compustat. Estimators are
based on Gandhi et al. (2020): GNR denotes the standard procedure with
a linear first stage, a second-degree polynomial in the second stage, and
a linear productivity process. GNR-N and GNR-ND are modifications to
accommodate network effects and network differencing respectively. All
specifications include industry and year fixed effects in the productivity
process.

Table 7: Value-Added Production Function Elasticities

Period Estimator Capital Labor

1977-1986
ACF 0.395 0.632
ACF-N 0.398 0.629
ACF-ND 0.405 0.623

1987-1996
ACF 0.441 0.606
ACF-N 0.437 0.614
ACF-ND 0.429 0.626

1997-2006
ACF 0.362 0.670
ACF-N 0.361 0.672
ACF-ND 0.347 0.685

2007-2016
ACF 0.327 0.670
ACF-N 0.326 0.671
ACF-ND 0.316 0.686

All
ACF 0.384 0.644
ACF-N 0.383 0.646
ACF-ND 0.375 0.657

This table reports input elasticities of a Cobb-Douglas value-added
production function (in logs) estimated on US firms in Compustat.
Estimators are based on Ackerberg et al. (2015): ACF denotes the
standard procedure with a second-degree polynomial in the first stage
and a linear productivity process. ACF-N and ACF-ND are modi-
fications to accommodate network effects and network differencing
respectively. All specifications include industry and year fixed effects
in the productivity process.
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8.2 Endogenous Productivity Spillovers

I now turn to estimates of productivity spillovers. First, I define the network as undirected: a

firm j belongs in firm i’s neighborhood if it either buys from or sells to the firm. I weight each

relationship by the value traded between the two firms in that year.27 Table 8 and figure 8 show

the endogenous network effects from gross output TFP.

Based on TFP measures from the standard GNR approach, the results suggest that a firm’s

productivity rises by 0.084 percent in the short run when its average buyer or seller gets 10 percent

more productive. Accounting for endogenous productivity spillovers in TFP estimation raises the

point estimate 0.09 percent, but differencing out common shocks to productivity lowers the estimate

to 0.076 percent. The persistence of TFP over time also implies a substantial long-run effect of

having more trading partners in one period. An estimated coefficient of 0.9 on ln TFPt−1, means

that transacting with a 10 percent more efficient firm in a single period results in a long-run

efficiency gain of 0.76 percent. In the value-added specification, the impact of correlated effects is

striking; the estimated short-run impact of a 10 percent rise in the average neighbor’s TFP goes

from 0.07 percent with standard ACF to 0.01 when I account for both endogenous and correlated

effects in the production function estimation.

Across all specifications, estimates from the standard approach and my modified procedure are

often statistically indistinguishable. This is consistent with the discussion in section A and results

from the Monte Carlo experiment in table 5: standard approaches yielded estimates of productivity

spillovers that were closest to the true effect when the network density was between 0.1 and 0.3

percent. As shown in figure 4, the density of the observed network in my sample ranges from 0.12

to 0.28 percent and lies within the region with the least bias in estimated spillovers.

It is worth noting, however, that because these spillovers have a cumulative impact over time

and space, even small differences in these point estimates could have result in substantially different

implications. To illustrate this, I simulate a growth path for the average firm in 1978 under the

assumption that it is connected to the median firm in the same year. For simplicity, I assume there

are no shocks to productivity and the average firm is also its partner’s only connection, and this

relationship remains the same for all periods. Then I compute:

ω̃t =
(
I − λ̂G

)−1 (
β̂1 + ρ̂ω̃t−1

)
, G =

(
0 1

1 0

)
(57)

where t = {1979 . . . 2016}, β̂1 = 0.203, and ρ̂ = 0.9. λ̂ takes on three possible values: the point

estimates from GNR, GNR-N and GNR-ND. I difference the cumulative TFP growth from what

it would be in a no-spillover scenario in which λ̂ = 0. Figure 12 shows that an endogenous effect

of 0.0076, as obtained from GNR-ND, implies that the average firm would grow an additional

16.3 percent due to spillovers by 2016. Standard GNR would overstate the cumulative impact

27As a robustness check, I estimate all specifications with an unweighted network. The results are in section E.2
of the appendix and are qualitatively similar.
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of spillovers, implying 18 percent additional growth, while accounting for network effects without

eliminating common productivity shocks would suggest a cumulative spillover effect of 19.6 percent.

To understand the economic importance of these spillovers in the cross-section, I compute a

back-of-the-envelope estimate of the impact of the most connected firm in each year on aggregate

TFP through spillovers. Let j denote the most central firm in year t. I sum up j’s contribution

to the network average for each of its connections, weighting by firm i’s nominal revenues in that

period, and multiply that by the spillover estimate. That is:

Contributionjt = λ̂
∑
it

weightitGijt (58)

whew weightit = Revenueit
Avg Revenuet

. Figure 14 shows that for λ̂ = 0.0019, a 10 percent increase in the

TFP of the most central firm would correspond with a 0.2 to 1.9 percent rise in aggregrate TFP

through spillovers alone.

8.2.1 Relationship Direction and Dynamics

Next, I examine how spillovers depend on the nature of the relationship between firms. Figure 10

and table 10 show that productive suppliers have almost 5 times the impact on their customers as

productive buyers have on their suppliers: a 10 percent more productive supplier raises efficiency by

0.095 percent while customers raise productivity by 0.02 percent. As depicted in figure 13, having a

more productive supplier implies that the average firm would grow an additional 19.3 percent over

the sample period due to spillovers, as compared to 4.3 percent from a more productive customer.28

To investigate how much this is driven by maintaining old relationships as opposed to forming

new ones, I decompose the interaction matrix into buyers/sellers that the firm traded with in both

the current and the previous year (Gt ∩Gt−1), and new links (Gt \Gt−1). The results in table 12

suggest that both old and new suppliers are important sources of spillovers, while new customers

are the primary sources of buyer-to-seller spillovers.

Estimates from value-added specifications do not show a significant difference between spillovers

from buyers to sellers or vice versa. In figure 11 and table 11, a 10 percent more efficient supplier

is associated with a 0.016 percent rise in productivity while the effect of buyers is 0.011 percent.

These effects are statistically indistinguishable from each other. For the rest of this discussion, I

focus on estimates from gross output production functions, but additional results from value-added

specifications are in section E.1 in the appendix.

8.2.2 Heterogeneity by Sector

In this section, I investigate how the spillovers transmit within and across sectors. I estimate a

gross output production function with endogenous and correlated effects, allowing spillovers to vary

by the sector of the firm and its trading partners. I classify sectors based on the share of observed

28Larger confidence intervals in the 1977-1986 period are likely due to a combination of fewer firms in the sample,
a denser network, and fewer reported links.
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links that are from sellers to buyers, or from buyers to sellers respectively. If 50 percent or more of

links between sector u and sector v are from suppliers in u to customers in v, then the spillovers

from u to v are classified as downstream, while the impact of sector v on firms in u is considered

an upstream spillover. Figures 15 and 16 depict estimates of downstream and upstream spillovers,

respectively that are significant at the 5 percent level. Table 13 reports the full set of estimates.

These results highlight the important role of information technology (IT), retailers and services

in productivity growth within the US. As shown by figure 15, the substantial downstream spillovers

occur within the electronics manufacturing sector. Furthermore, the synergies between electronics

manufacturing and the finance, insurance and real estate sector is primarily driven by technology

patent holders (SIC 6794 and NAICS 533110) such as InterDigital Inc. which provides mobile

technology research services to mobile phone manufacturers such as Apple. Manufacturers also

tend to amplify the impact of productivity growth in other sectors because they enjoy efficiency

boosts from both directions: electronics manufacturers from mainly customers and manufacturers

of non-durables from their suppliers (see figure 16). Retailers are an import source of upstream

spillovers, while transport and warehousing firms generate downstream spillovers. None of these

sectors receives efficiency boosts from other sectors, and in fact, experience negative network effects.

Negative endogenous effects suggests free-riding or, given that I use deflated sales as a measure of

output, downward pressure on prices by more profitable firms.

8.2.3 The Role of Firm Size

Finally, I consider the role of firm size in the transmission of efficiency gains through the production

network. I classify firms as large if they have 500 or more employees, the definition used by the US

BEA. The results are reported in table 14 and figure 17 highlights estimates that are significant

at the 5% level. Large productive suppliers are an important source of productivity gains for both

large and small firms, with small customers benefiting nearly twice as much as large buyers. Small

efficient suppliers also have a substantial impact on their large customers. The effect of customer

efficiency on their suppliers is driven solely by large firms.

Given that the average firm in my sample is larger than the average firm in the US, at least 60

percent or more the sample can be classified as large based on this definition. In table 15, I check

how sensitive these results are to different classifications of firm size. I consider three alternative

definitions based on the number of employees: greater than or equal to 1000, 5000 or an industry-

year specific median. The results are similar across definitions except that, as excepted, the impact

of large firms diminishes while that of small firms rises.
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Figure 8: Spillover Estimates (Gross-Output)
This figure shows point estimates and 95%
confidence intervals of endogenous productivity
spillovers from a gross output production function.
See table 8 for standard errors.

Figure 9: Spillover Estimates (Value-Added)
This figure shows point estimates and 95%
confidence intervals of endogenous productivity
spillovers from a value-added production function.
See table 9 for standard errors.

Figure 10: Spillover Estimates by Relationship Direction (Gross-Output)
This figure shows point estimates and 95% confidence intervals of endogenous productivity spillovers by
direction of the relationship from a gross output production function. See table 10 for standard errors.

Figure 11: Spillover Estimates by Relationship Direction (Value-Added)
This figure shows point estimates and 95% confidence intervals of endogenous productivity spillovers by
direction of the relationship from a value-added production function. See table 11 for standard errors.
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Figure 12: Cumulative Impact of Endogenous
Productivity Spillovers over Time
This figure depicts a simulated path of log(TFP) for
a firm with productivity equal to the 1978 average,
assuming it is connected to the median firm in the
same year. Endogenous productivity spillovers are
assumed to be 0.0077, 0.0083 and 0.0062 obtained
from GNR, GNR-N and GNR-ND respectively. The
bottom dotted line assumes that the firm experiences
no spillovers.

Figure 13: Cumulative Impact of Endogenous
Productivity Spillovers by Relationship Type
This figure depicts a simulated path of log(TFP) for
a firm with productivity equal to the 1978 average,
assuming it is connected to the median firm in the
same year. Endogenous productivity spillovers are
assumed to be 0.0014, 0.0066 and 0.0062 for cus-
tomers, suppliers or either, respectively. The bot-
tom dotted line assumes that the firm experiences no
spillovers.

Figure 14: Contribution of Most Central Firms to Aggregate TFP
This figure shows the impact of a 10% increase in the TFP of the most central firm in each year to
aggregate productivity through spillovers. The contribution of the most central firm j in year t is
calculated as λ̂

∑
it weightitGijt where λ̂ = 0.019 and weightit = Revenueit

Avg Revenuet
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Figure 15: Downstream Productivity Spillovers by Sector

This figure shows downstream productivity spillovers (λ) that vary by the sector of the firm and its trading partners.
Estimates are significant at the 5% level. Sector nodes are weighted by the total number of connections originating
from or going to firms in the sector, across all time periods. See table 13 for the full set of coefficients.
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Figure 16: Upstream Productivity Spillovers by Sector

This figure shows upstream productivity spillovers (λ) that vary by the sector of the firm and its trading partners.
Estimates are significant at the 5% level. Industry nodes are weighted by the total number of connections originating
from or going to firms in the sector, across all time periods. See table 13 for the full set of coefficients.
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Figure 17: Endogenous Productivity Spillovers by Firm Size

This figure shows endogenous productivity spillovers that vary by firm size. Esti-
mates are significant at the 10% level. See table 10 for the full set of coefficients.
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Table 8: Endogenous Productivity Spillovers
(Gross Output)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

GNR
0.8401 0.0068

(0.0205) (0.0049)

GNR-N
0.839 0.007

(0.0207) (0.0049)

GNR-ND
0.8257 0.0001

(0.0227) (0.0057)

1987-1996

GNR
0.8313 -0.0077

(0.0244) (0.0043)

GNR-N
0.8312 -0.0075

(0.0244) (0.0043)

GNR-ND
0.8229 -0.0109

(0.0271) (0.0044)

1997-2006

GNR
0.858 0.0033

(0.013) (0.0042)

GNR-N
0.8585 0.0041

(0.0134) (0.0042)

GNR-ND
0.8586 0.0046

(0.0147) (0.0053)

2007-2016

GNR
0.8957 0.0145

(0.0215) (0.005)

GNR-N
0.8963 0.0133

(0.0214) (0.0052)

GNR-ND
0.8918 0.0109
(0.023) (0.0048)

All

GNR
0.9035 0.0084

(0.0067) (0.0023)

GNR-N
0.9025 0.009

(0.0067) (0.0023)

GNR-ND
0.8996 0.0076

(0.0073) (0.0024)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a gross output production function (in logs) esti-
mated with the standard Gandhi et al. (2020) procedure
(GNR), or with modifications to accommodate network
effects (GNR-N) and network differencing (GNR-ND).
Network effects for GNR are estimated using the gen-
eralized 2SLS procedure in Lee (2003); Bramoullé et al.
(2009). Standard errors are in parentheses. All specifi-
cations include industry and year fixed effects.

Table 9: Endogenous Productivity Spillovers
(Value-Added)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

ACF
0.8169 0.0123

(0.0207) (0.0065)

ACF-N
0.8168 0.0097

(0.0207) (0.0062)

ACF-ND
0.807 -0.0039

(0.0214) (0.0105)

1987-1996

ACF
0.8472 -0.002

(0.0135) (0.005)

ACF-N
0.8479 -0.0036

(0.0134) (0.0049)

ACF-ND
0.8482 -0.0093

(0.0121) (0.0057)

1997-2006

ACF
0.8679 0.0086

(0.0116) (0.0058)

ACF-N
0.8682 0.0083

(0.0116) (0.0059)

ACF-ND
0.8685 0.0064

(0.0104) (0.0051)

2007-2016

ACF
0.8774 0.0063

(0.0321) (0.005)

ACF-N
0.8776 0.0061
(0.032) (0.005)

ACF-ND
0.8691 -0.0046

(0.0358) (0.0044)

All

ACF
0.8687 0.007

(0.0095) (0.0026)

ACF-N
0.8688 0.0064

(0.0095) (0.0026)

ACF-ND
0.8663 0.001

(0.0101) (0.0026)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a value-added production function (in logs) esti-
mated with the standard Ackerberg et al. (2015) proce-
dure (ACF), or with modifications to accommodate net-
work effects (ACF-N) and network differencing (ACF-
ND). Network effects for ACF are estimated using the
generalized 2SLS procedure in Lee (2003); Bramoullé
et al. (2009). Standard errors are in parentheses. All
specifications include industry and year fixed effects.
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Table 10: Productivity Spillovers by
Relationship Direction (Gross Output)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

GNR
0.0035 0.0159

(0.0041) (0.0048)

GNR-N
0.0019 0.0124

(0.0027) (0.0034)

GNR-ND
-0.0038 0.0156
(0.0046) (0.0049)

1987-1996

GNR
0.0056 -0.0084

(0.0038) (0.0038)

GNR-N
0.0072 -0.0138
(0.004) (0.0041)

GNR-ND
0.0048 -0.0145
(0.004) (0.0041)

1997-2006

GNR
0.0013 0.0023

(0.0005) (0.0005)

GNR-N
0.0011 0.0034

(0.0005) (0.0006)

GNR-ND
0.0007 0.0043

(0.0006) (0.0006)

2007-2016

GNR
0.0007 0.0017

(0.0004) (0.0006)

GNR-N
0.0005 0.0027

(0.0005) (0.0008)

GNR-ND
0.0002 0.0026

(0.0004) (0.0008)

All

GNR
0.0026 0.0053

(0.0008) (0.0009)

GNR-N
0.0032 0.0102
(0.001) (0.0013)

GNR-ND
0.002 0.0095

(0.0009) (0.0012)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a gross output production function (in logs) esti-
mated with the standard Gandhi et al. (2020) procedure
(GNR), or with modifications to accommodate network
effects (GNR-N) and network differencing (GNR-ND).
Network effects for GNR are estimated using the gener-
alized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Stan-
dard errors are in parentheses. All specifications include
industry and year fixed effects.

Table 11: Productivity Spillovers by
Relationship Direction (Value-Added)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

ACF
0.0018 0.0024

(0.0014) (0.0014)

ACF-N
0.0015 0.0027

(0.0014) (0.0014)

ACF-ND
-0.0003 0.002
(0.0016) (0.0015)

1987-1996

ACF
0.0011 0.0012

(0.0008) (0.0008)

ACF-N
0.0011 0.0007

(0.0008) (0.0008)

ACF-ND
0.0011 0.0004

(0.0008) (0.0008)

1997-2006

ACF
0.0013 0.0016

(0.0006) (0.0006)

ACF-N
0.0012 0.002

(0.0006) (0.0006)

ACF-ND
0.0007 0.0022

(0.0006) (0.0006)

2007-2016

ACF
0.001 0.0012

(0.0005) (0.0005)

ACF-N
0.001 0.0014

(0.0004) (0.0005)

ACF-ND
0.0011 0.001

(0.0004) (0.0004)

All

ACF
0.0013 0.0016

(0.0003) (0.0004)

ACF-N
0.0012 0.0018

(0.0003) (0.0004)

ACF-ND
0.0011 0.0016

(0.0003) (0.0003)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a value-added production function (in logs) esti-
mated with the standard Ackerberg et al. (2015) proce-
dure (ACF), or with modifications to accommodate net-
work effects (ACF-N) and network differencing (ACF-
ND). Network effects for ACF are estimated using the
generalized 2SLS procedure for heterogenous peer effects
in Dieye and Fortin (2017); Patacchini et al. (2017).
Standard errors are in parentheses. All specifications
include industry and year fixed effects.
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Table 12: Productivity Spillovers by Relationship Dynamics (Gross Output)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

GNR
0.0032 0.0006 0.0143 0.0073

(0.0033) (0.0039) (0.0037) (0.0038)

GNR-N
0.0 0.0001 0.0087 0.0052

(0.0017) (0.0018) (0.002) (0.0018)

GNR-ND
-0.0004 -0.0019 0.0113 0.0049
(0.0023) (0.0022) (0.0024) (0.0023)

1987-1996

GNR
0.0072 0.0033 -0.0035 -0.0118

(0.0035) (0.0039) (0.0041) (0.0035)

GNR-N
0.0074 0.0082 -0.009 -0.0194

(0.0041) (0.0049) (0.0049) (0.004)

GNR-ND
-0.0128 0.0101 -0.0009 -0.0175
(0.0046) (0.0064) (0.0101) (0.0081)

1997-2006

GNR
-0.0007 0.0005 0.0003 0.0013
(0.0004) (0.0004) (0.0003) (0.0003)

GNR-N
-0.0009 0.0003 0.0014 0.0025
(0.0004) (0.0004) (0.0004) (0.0004)

GNR-ND
-0.0011 0.0002 0.0019 0.0031
(0.0005) (0.0005) (0.0005) (0.0004)

2007-2016

GNR
0.0005 0.0006 0.0015 0.0013

(0.0004) (0.0004) (0.0005) (0.0004)

GNR-N
0.0005 0.0004 0.0031 0.0026

(0.0005) (0.0005) (0.0008) (0.0006)

GNR-ND
0.0003 0.0003 0.0031 0.0027

(0.0005) (0.0005) (0.0009) (0.0007)

All

GNR
0.0008 0.0017 0.0028 0.0038

(0.0006) (0.0006) (0.0006) (0.0006)

GNR-N
0.001 0.0017 0.0067 0.0077

(0.0007) (0.0007) (0.0009) (0.0008)

GNR-ND
0.0005 0.0013 0.0071 0.0082

(0.0007) (0.0008) (0.001) (0.0009)

This table reports coefficients of a linear productivity evolution process with endogenous
network effects estimated on US firms in Compustat. Each TFP measure is from a gross
output production function (in logs) estimated with the standard Gandhi et al. (2020) pro-
cedure (GNR), or with modifications to accommodate network effects (GNR-N) and network
differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS
procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017).
Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table 13: Productivity Spillovers by Sector (Gross Output)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining
-0.0084 -0.0096 -0.0064 0.0017 0.0075 -0.0161 0.0172 0.0094 0.0102 0.0357 0.0042 0.0028
(0.0064) (0.0038) (0.0331) (0.005) (0.0027) (0.0326) (0.0104) (0.008) (0.0092) (0.0111) (0.0085) (0.008)

Utilities
-0.0032 -0.0007 0.0061 0.003 0.01 0.0134 0.0041 -0.0028 0.0018 -0.0024 -0.0038 0.0105
(0.0059) (0.0028) (0.0104) (0.0027) (0.0021) (0.0082) (0.0083) (0.0084) (0.0065) (0.0125) (0.0178) (0.006)

Construction
-0.0192 0.0014 0.0147 0.0055 -0.0058 -0.0079 0.0113 -0.0075 0.017 0.0043 -0.0005 0.0282
(0.0312) (0.0041) (0.0115) (0.0059) (0.0036) (0.0133) (0.0076) (0.009) (0.0228) (0.0035) (0.0061) (0.0218)

Durables Mfg
0.0077 0.0002 0.0265 0.0025 0.0012 -0.0036 0.0079 -0.0016 0.0029 0.0039 0.0052 0.0032

(0.0065) (0.003) (0.0231) (0.0022) (0.0016) (0.0024) (0.0027) (0.0016) (0.0035) (0.0034) (0.0063) (0.0034)
Non-Durables
Mfg

-0.0061 -0.0014 -0.0028 0.0001 -0.001 -0.0067 0.0034 -0.0062 -0.0065 -0.0026 -0.0175 -0.0102
(0.0052) (0.0028) (0.0132) (0.0018) (0.0013) (0.0048) (0.0027) (0.0016) (0.0038) (0.0044) (0.0085) (0.0038)

Electronics Mfg
-0.0433 -0.0157 -0.0275 -0.0003 -0.0043 0.0244 0.013 0.0021 0.0079 0.0007 0.0207 0.0001
(0.0501) (0.0055) (0.0355) (0.0046) (0.0038) (0.0029) (0.0031) (0.0032) (0.0058) (0.0031) (0.0091) (0.0043)

Wholesale
-0.0052 0.0126 0.0121 0.0022 0.0032 0.0165 0.01 0.0017 0.0033 0.0022 -0.0132 0.0027
(0.0118) (0.0075) (0.0164) (0.0021) (0.0012) (0.0021) (0.0038) (0.0014) (0.0104) (0.0024) (0.0118) (0.004)

Retail
0.0113 -0.0037 -0.0075 0.0074 0.003 0.0194 0.0104 0.0012 -0.0013 0.009 0.018 0.0017

(0.0118) (0.0104) (0.016) (0.0028) (0.0013) (0.0036) (0.0019) (0.0026) (0.004) (0.0041) (0.0046) (0.0044)
Transport and
Warehousing

0.0079 0.0116 0.0575 0.0037 0.0033 0.0067 0.0078 0.0022 -0.0031 0.0007 -0.0088 0.0
(0.0094) (0.0034) (0.0184) (0.0041) (0.002) (0.0059) (0.0109) (0.0039) (0.0042) (0.0081) (0.0073) (0.0103)

Information
0.0244 -0.0023 0.0085 -0.0035 -0.001 0.0151 0.0064 -0.001 -0.018 0.0041 0.0066 -0.0074

(0.0118) (0.0069) (0.017) (0.0039) (0.0028) (0.0025) (0.0049) (0.0026) (0.0048) (0.0028) (0.0047) (0.004)
Finance, Insur &
Real Estate

0.0004 0.005 -0.0134 0.0 -0.0044 0.0134 -0.0026 0.0017 0.0045 0.0042 -0.0021 0.0048
(0.0112) (0.0143) (0.0128) (0.0044) (0.0025) (0.0034) (0.0149) (0.002) (0.0043) (0.0031) (0.0043) (0.0036)

Services
0.0035 -0.0088 0.0083 0.0088 0.0042 0.0022 0.0084 0.0042 0.0025 0.0052 0.009 0.0025

(0.0117) (0.0036) (0.0253) (0.0023) (0.0023) (0.0028) (0.0072) (0.0026) (0.005) (0.0031) (0.0048) (0.0037)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP
measure is from a gross output production function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with modifications to
accommodate network effects (GNR-N) and network differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS procedure for
heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA industry classification. Standard
errors are in parentheses. All specifications include industry and year fixed effects.
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Table 14: Productivity Spillovers by Firm Size & Relationship Direction (Gross Output)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large

0.0012 0.0033 -0.0001 0.0003 0.002
(0.0031) (0.0073) (0.0004) (0.0004) (0.0008)

Small
-0.0032 -0.0028 0.0005 -0.0004 0.0021
(0.0037) (0.0056) (0.0006) (0.0006) (0.001)

Suppliers
Large

0.0141 -0.0226 0.0024 0.0026 0.0083
(0.0032) (0.0103) (0.0004) (0.0007) (0.001)

Small
0.0509 -0.0638 0.0046 -0.005 0.0143

(0.0273) (0.0208) (0.0024) (0.0025) (0.0077)

Small

Customers
Large

-0.0115 -0.0701 -0.0058 -0.0059 -0.0091
(0.0106) (0.0447) (0.0026) (0.0064) (0.0076)

Small
-0.0004 -0.0387 0.0 -0.0008 -0.0045
(0.0127) (0.0329) (0.0021) (0.0027) (0.0052)

Suppliers
Large

0.0122 -0.0124 0.0021 0.0023 0.0081
(0.0034) (0.0054) (0.0004) (0.0006) (0.0009)

Small
0.0502 -0.0144 0.0032 0.0 0.0075

(0.0227) (0.0133) (0.0019) (0.003) (0.0053)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated
on US firms in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with
the standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N)
and network differencing (GNR-ND). Network effects for ACF are estimated using the generalized 2SLS procedure
for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with
500 or more employees.Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table 15: Productivity Spillovers by Varying Firm Size Cutoffs (Gross Output)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large

0.002 0.0017 0.0015 0.0011
(0.0008) (0.0008) (0.0008) (0.0008)

Small
0.0021 0.0036 0.0019 0.0015
(0.001) (0.0011) (0.001) (0.001)

Suppliers
Large

0.0083 0.008 0.006 0.0088
(0.001) (0.001) (0.0008) (0.001)

Small
0.0143 0.0094 0.0086 0.0093

(0.0077) (0.0036) (0.0027) (0.0016)

Small

Customers
Large

-0.0091 -0.001 -0.0038 0.0019
(0.0076) (0.0061) (0.0039) (0.0015)

Small
-0.0045 -0.0051 0.0007 0.0026
(0.0052) (0.0036) (0.0012) (0.0012)

Suppliers
Large

0.0081 0.0086 0.008 0.0074
(0.0009) (0.001) (0.0012) (0.0011)

Small
0.0075 0.0074 0.0091 0.0088

(0.0053) (0.0033) (0.0013) (0.0013)

This table reports coefficients of a linear productivity evolution process with endogenous network
effects estimated on US firms in Compustat. Each TFP measure is from a gross output production
function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with mod-
ifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network
effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as many
employees as the cutoffs indicated above. The median cutoff is determined by industry and year.
Standard errors are in parentheses. All specifications include industry and year fixed effects.
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9 Concluding Remarks

This paper examines how efficiency gains are transmitted through vertical relationships. The

existence of spillovers implies a form of firm interdependence that matters for consistent estimation

of production functions. Using Monte Carlo experiments, I show that endogenous spillovers—the

effect of the average productivity of a firm’s neighbors on its own productivity—are an important

source of bias when not accounted for in TFP estimation. Furthermore, the direction of this bias

cannot always be clearly predicted a priori, and varies by the density of the network and the

persistence of productivity. However, for moderately sparse networks, standard approaches may

deliver reasonably unbiased estimates of production function elasticities and spillovers.

Under additional assumptions on firms’ information sets and the structure of the network, I

propose a methodology that can flexibly accommodate various network effects and endogenous

network formation, and can be applied to both gross output and value-added production functions.

I show experimentally that it performs better than standard approaches as long as the network is

not too dense and productivity is sufficiently persistent.

Using data from Compustat on supplier-customer relationships in the US, I investigate the

extent of productivity spillovers in from 1977 to 2016. I find that firms benefit from having more

productive buyers and sellers, with both large and small suppliers having a larger effect than

customers. Furthermore, the cumulative impact of spillovers over the 4 decades in the sample

could mean a 16 percent difference in efficiency when compared to a no-spillover scenario.

Estimates suggest that if the most connected firm in a given year was 10 percent more pro-

ductive, spillovers would lead to an increase in aggregate TFP of 0.2 to 1.9 percent. This also

works in the opposite direction: a significant decline in productivity of central firms could mean

substantial second-order impacts to US aggregate efficiency due to the interdependence of firms’

activities through supply chains. This suggests that industrial and trade policies that could poten-

tially affect the productivity of well-connected firms needs to account for potential indirect effects

both upstream and downstream.

The sectoral composition of the production network plays a large role in the size and transmis-

sion of productivity gains. I find substantial heterogeneity in the size and spillovers between and

within sectors, with electronics manufacturers benefiting from efficiency gains from most sectors,

while retailers and services boost other sectors.

Consistent with my Monte Carlo experiments, estimates from standard approaches empirically

yielded estimates of network effects that were similar to those obtained from my procedure, because

the observed network density fell within the region where bias in spillover estimates was minimized.

While this is reassuring for studies conducted on networks with similar levels of sparsity, caution

should be taken when networks are much sparser or denser.

Results differed between gross output and value-added specifications. As discussed in Gandhi

et al. (2017), value-added and gross output productivity measures may vary significantly and lead

to substantively different policy implications about the dispersion of firm productivity. My pa-
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per reveals that the choice of production function also matters for the estimation of productivity

spillovers.
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Atalay, E., A. Hortaçsu, J. Roberts, and C. Syverson (2011). Network structure of production.

Proceedings of the National Academy of Sciences 108 (13), 5199–5202. (Cited on page 4.)

Bazzi, S., A. V. Chari, S. Nataraj, and A. D. Rothenberg (2017). Identifying productivity spillovers

using the structure of production networks. (Cited on page 2.)

Bernard, A. B. and A. Moxnes (2018). Networks and trade. Annual Review of Economics (0).

(Cited on page 28.)

Blundell, R. and S. Bond (2000). GMM estimation with persistent panel data: an application to

production functions. Econometric reviews 19 (3), 321–340. (Cited on pages 15 and i.)
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Appendices

A Derivation of Bias Terms

In this section, I derive expressions for the bias in production function elasticities shown in section

3.3.

yt = α``t + αkkt + ωt + εt

ωt = ρ(I − λGt)−1ωt−1 + (I − λGt)−1ζit = ρ
∑
s=0

λsGstωt−1 +
∑
s=0

λsGstζt

=⇒ yt = α``t + αkkt + ρ
∑
s=0

λsGstωt−1 +
∞∑
s=0

λsGstζt + εt

ωt−1 = ϕt−1 − α``t−1 − αkkit−1

=⇒ yt = α``t + αkkt + ρ
∑
s=0

λsGst (ϕt−1 − α``t−1 − αkkit−1) +

∞∑
s=0

λsGstζit + εt

yt−1 = ϕt−1 + εt

=⇒ yt = α``t + αkkt + ρ
∞∑
s=0

λsGst (yt−1 − α``t−1 − αkkt−1 − ut−1) +
∞∑
s=0

λsGstζt + εt

Let ∆Gxt = xt−ρ
∑∞

s=0 λ
sGstxt−1, ∆err

xt = ρ
∑∞

s=1 λ
sGstxt−1 and ∆xt = xt−ρxt−1 = ∆Gxt+∆err

xt .

This implies:

∆Gyt = α`∆
G`t + αk∆

Gkt +

∞∑
s=0

λsGstζt + ∆Gεt (59)

This is equivalent to the dynamic panel approach in Blundell and Bond (2000). However, growth

in output, labor and capital have been purged of the variation from network effects in the previous

period. When we assume no spillovers, we estimate:

∆yt = α`∆`t + αk∆kt + ut (60)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing non-classical

measurement error into both output and inputs.

Bias from ignoring spillovers can also be characterized as an omitted variables problem. By

estimating equation (60), where ut = ρ
∑∞

s=1 λ
sGstωt−1 +

∑∞
s=0 λ

sGstζt + εt. That is, the standard

ACF procedure succeeds in eliminating the endogeneity problem that arises from input decisions

depending on its own productivity, but is unable to account for the influence of its network’s past

productivity.

In either case, an instrumental variable approach would help to eliminate the problem. The key

would be to find variables that are correlated with changes to labor and capital but uncorrelated

i



with output, particularly the input choices and output of other firms.

In the OP case where the labor elasticity is estimated in the first stage, the second stage is

equivalent to estimating:

∆Gỹt = αk∆
Gkt +

∞∑
s=0

λsGstζt + ∆Gεt (61)

(62)

where ỹt = yt − α̂``t. Then by estimating ∆ỹt = αk∆kt + ut under the standard assumption of

no-spillovers:

plim α̂k =
cov(∆kt,∆ỹt)

var(∆kt)
(63)

plim = αk

(
1− ρ

∞∑
s=1

λs
cov(∆kt, G

s
tkt−1)

var(∆kt)

)
+ ρ

∞∑
s=1

λs
cov(∆kt, G

s
t ỹt−1)

var(∆kt)
(64)

When productivity is mismeasured by ignoring spillovers, the resulting estimates also result in

incorrect conclusions about spillover effects. When (α`, αk) are consistently estimated, and

ω̂t = ϕ̂t − α̂``t − α̂kkt (65)

plim ω̂t = ϕt − α``t − αkkt = ωt (66)

However, when we estimate (α̃`, α̃k) = (α̂` + αerr` , α̂k + αerrk ), to obtain ω̃t = ϕ̂t− α̃``t− α̃kkt. Then

ω̃t = ϕ̂t − α̃``t − α̃kkt = ϕ̂t − α̂``t − α̂kkt − (αerr` `t + αerrk kt) = ω̂t − ωerrt (67)

where ωerrt = αerr` `t + αerrk kt In the generalized 2SLS procedure for estimating network effects, we

estimate λ̃ in the first stage by using Gtω̃t−1 as an instrument for Gtω̃t in this equation:29 The true

model is:

ωt = ρωt−1 + λGtωt + ζt

but we estimate:

ω̃t = ρω̃t−1 + λGtω̃t + vt

B Monte Carlo Setup

The Monte Carlo setup closely follows Collard-Wexler and De Loecker (2016), Van Biesebroeck

(2007) and Ackerberg et al. (2015) with modifications for network generation and the inclusion

of spillovers in the productivity process. I generate a balanced panel of 1000 firms over 10 time

periods.

29Further lags of the network effect can be used (G2
t ω̃t, G

3
t ω̃t and so on). However, for ease of exposition, I focus

on the just-identified case.
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B.1 Production Function

I use a structural value-added production function that is Leontief in materials.

Yit = min{Lα`it K
αk
it e

ωit , αmMit}eεit (68)

=⇒ Yit = Lα`it K
αk
it e

ωit+εit = αmMite
εit (69)

In logs, yit = α``it + αkkit + ωit + εit (70)

where εit ∼ N (0, σ2
ε). I set α` = 0.6, αk = 0.4 and σ2

ε = 1

B.2 Productivity Process and Network

Productivity evolves according to an AR1 process that allows for contemporaneous endogenous

productivity spillovers. For ease of notation, I write the equation in vectorized form:

ωt = β1ι+ ρωt−1 + λGtωt + ζt (71)

where ζit ∼ N (0, σ2
ζ ). I set σ2

ζ = 5. I generate productivity using the reduced form of the above

equation:

ωt = (I− λGt)−1 (β1ι+ ρωt−1 + ζt) (72)

Gt is the interaction matrix defined as in section 3.2 derived from the network. I generate exogenous

networks using Erdős and Rényi (1960) graphs, also known as binomial graphs. Firms are edges

are formed Aijt
i.i.d.∼ Bern(p).

B.3 Intermediate Input Demand

Mit =
1

αm
Kαk
it L

α`
it e

ωit (73)

In logs, mit = αkkit + α``it + ωit − ln(αm) (74)

B.4 Labor Demand

Wages, Wit are firm-year specific and distributed log-normally: ln(Wt) ∼ N (0, σ2
w). Then each firm

chooses optimal labor according to:

Lit =

(
α`
Kαk
it

Wit
eωit
) 1

1−α`
(75)

In logs, `it =
1

1− α`
(ln(α`) + αkkit + ωit − ln(Wit)) (76)
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B.5 Capital and Optimal Investment

Capital is accumulated as follows:

Kit = (1− δ)Kit−1 + It−1 (77)

I set the depreciation rate at δ = 0.2.

Investment is subject to convex adjustment costs c(Iit) = b
2I

2
it with b = 0.3. Optimal investment

can be derived by setting up the profit maximization problem:30

Πit = Lα`it K
αk
it e

ωit −WitLit −
b

2
I2
it (78)

Here, I assume perfect competition and normalize the price of output to 1. The firm’s value function

is :

V (Lit,Kit,Wit, ωit) = max
Lit,Kit

Lα`it K
αk
it e

ωit −WitLit −
b

2
I2
it + β Eit V (Lit+1,Kit+1,Wit+1, ωit+1) (79)

such that Kit+1 = (1− δ)Kit + It (80)

β is the discount factor and is fixed at 0.95. Optimal investment solves the Euler equation
∂V

∂I
= 0:

bIit = β Eit VK(Lit+1,Kit+1,Wit+1, ωit+1) (81)

The envelope condition yields:

VK(Lit,Kit,Wit, ωit) = αkL
α`
it K

αk−1
it eωit + β(1− δ)Eit VK(Lit+1,Kit+1,Wit+1, ωit+1) (82)

Substituting in (75) and (81):

VK(Lit,Kit,Wit, ωit) = αkα
α`

1−α`
` K

αk+α`−1

1−α`
it W

−α`
1−α`
it e

ωit
1−α` + b(1− δ)Iit (83)

Given a constant returns to scale technology (α` + αk = 1), the Euler equation becomes:

Iit =
βαk
b
α

α`
1−α`
` Eit

[
W

−α`
1−α`
it+1 e

ωit+1
1−α`

]
+ β(1− δ)Eit Iit+1 (84)

=⇒ Iit =
βαk
b
α

α`
1−α`
`

∞∑
τ=0

βτ (1− δ)τ Eit

[
W

−α`
1−α`
it+1+τe

ωit+1+τ
1−α`

]
(85)

30This derivation follows Collard-Wexler and De Loecker (2016) and Van Biesebroeck (2007).

iv



Since wages and productivity are drawn independently,

Eit

[
W

−α`
1−α`
it+1+τe

ωit+1+τ
1−α`

]
= Eit

[
W

−α`
1−α`
it+1+τ

]
Et
[
e
ωit+1+τ

1−α`

]

for all τ ≥ 0. Furthermore, ln(Wit) ∼ N (0, σw)2 =⇒ Eit

[
W

−α`
1−α`
it+1+τ

]
= exp

(
α2
`σ

2
w

2(1−α`)2

)
.

The value of Et
[
e
ωt+1+τ

1−α`

]
depends on the productivity process:

ωt+1+τ =ρ(I − λGt+τ+1)−1ωt+τ + (I − λGt+τ+1)−1εt+1+τ

=ρ2(I − λGt+τ+1)−1(I − λGt+τ )−1ωit+τ−1 + ρ(I − λGt+τ+1)−1(I − λWt+τ )−1εt+τ

+ (I − λGt+τ+1)−1εt+τ+1

ωt+1+τ =ρτ+1
τ∏
r=0

(I − λGt+τ+1−r)
−1ωt +

τ∑
r=0

ρr
r∏
s=0

(I − λGt+τ+1−s)
−1εt+τ+1−r (86)

Et
[
e
ωt+1+τ

1−α`

]
depends on the whether spillovers exist, and if they do, how firms form expectations

about future links. When there are no spillovers λ = 0:

Et
[
e
ωit+1+τ

1−α`

]
= Et

[
exp

(
ρτ+1ωit
1− α`

+
1

1− α`

τ∑
r=0

ρrεt+τ+1−r

)]
(87)

= exp

(
ρτ+1ωit
1− α`

) τ∏
r=0

Eit
[
exp

(
ρrεit+τ+1−r

1− α`

)]
(88)

= exp

(
ρτ+1ωit
1− α`

) τ∏
r=0

exp

(
ρ2rσ2

ζ

2(1− α`)2

)
(89)

Let G represent the result of firms’ beliefs about their future network. For example, if networks are

non-stochastic or firms naively believe that Gt+τ = Gt ∀τ > 0, then we can set G = Gt+1, which is

deterministic given our previous assumption that Gt+1 ∈ It:

Et
[
e
ωit+1+τ

1−α`

]
= Et

[
exp

(
ρτ+1

1− α`
(I − λG)−(τ+1)ωt +

1

1− α`

τ∑
r=0

ρr(I − λG)−(r+1)εt+τ+1−r

)]

= exp

(
ρτ+1

1− α`
(I − λG)−(τ+1)ωt

) τ∏
r=0

Eit
[
exp

(
ρr

1− α`
(I − λG)−(r+1)εt+τ+1−r

)]

= exp

(
ρτ+1

1− α`
(I − λG)−(τ+1)ωt

) τ∏
r=0

exp

(
ρ2rσ2

ζ

2(1− α`)2
(I − λG)−2(r+1)ι

)

Eit
[
e
ωit+1+τ

1−α`

]
= exp

(
ρτ+1

1− α`
(I − λG)−(τ+1)ωt

) τ∏
r=0

exp

(
ρ2rσ2

ζ

2(1− α`)2(1− λ)2(r+1)

)
(90)
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Therefore, optimal investment choice reduces to a function of parameters and current productivity:

It =
βαk
b
α

α`
1−α`
` exp

(
α2
`σ

2
w

2(1− α`)2

)
(91)

×
∞∑
τ=0

βτ (1− δ)τ exp

(
ρτ+1

1− α`
(I − λG)−(τ+1)ωt +

σ2
ζ

2(1− α`)2(1− λ)2

τ∑
r=0

(
ρ

1− λ

)2r
)

When there are no spillovers, this reduces to:

It =
βαk
b
α

α`
1−α`
` exp

(
α2
`σ

2
w

2(1− α`)2

) ∞∑
τ=0

βτ (1− δ)τ exp

(
ρτ+1ωt
1− α`

+
σ2
ζ

∑τ
r=0 ρ

2r

2(1− α`)2

)
(92)

For alternative assumptions on the productivity process, such as a quadratic AR1 process, and en-

dogenous network formation, it is not feasible to derive an closed-form solution as above. However,

as long technology exhibits constant returns to scale, I approximate optimal investment as follows.

Firstly, given |β(1 − δ)| < 1, then for some tolerance level close to zero, βτ (1 − δ)τ < tolerance.

Therefore, I can choose M sufficiently high such that
∑M

τ=0 β
τ (1 − δ)τ Eit

[
W

−α`
1−α`
it+1+τe

ωit+1+τ
1−α`

]
is a

good approximation for
∑∞

τ=0 β
τ (1− δ)τ Eit

[
W

−α`
1−α`
it+1+τe

ωit+1+τ
1−α`

]
. I set a tolerance level of e−4, and

given β(1− δ) = 0.95(1− 0.2), then M = 34.

Next, at each time t, I draw 100 realizations of the sequence {ωit+1+τ}Mτ=0 for each firm i and

approximate Eit
[
exp

(
ωit+1+τ

1−α`

)]
= 1

100

∑100
s=0 exp

(
ωit+1+τ,s

1−α`

)
.
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C Additional Monte Carlo Experiments

In this section, I consider how bias and precision change with the size of the endogenous network

effect, and the persistence of productivity over time. The Monte Carlo setup is the same as in

section 6.3.

When I vary λ, ACF and ACF-N perform similarly, yielding comparable estimates of the input

elasticities and spillover effects. Low values of λ are difficult to detect, while at very high values,

there is a sharp decline in efficiency, with the decline greater under ACF. Under the linear process

with negative spillovers, ACF-N appears to perform better than ACF as λ rises in magnitude.

Finally, variations in ρ1 have striking effects on the estimation of λ because it determines

the strength of Gtωt−1 as an instrument for Gtωt. Intuitively, if productivity is not persistent,

then neighbors’ lagged TFP is a weak instrument for the contemporaneous effect of neighbors’s

productivity, because the intertemporal correlation is not strong. ACF-N is not immune to this

issue, and loses efficiency in its estimates of λ unless ρ1 is sufficiently high. However the input

elasticities are relatively well estimated by ACF-N, while ACF leads to biased estimates for high

values of ρ1: overestimating the capital coefficient when ρ1 = 0.8 and underestimating it when

ρ1 = 0.9.
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Table 16: Effect of λ on Bias and Precision (Quadratic AR1)

λ Estimator

Elasticities Productivity Process Coefficients

α` αk β1 ρ1 ρ2
λ

True 0.6 0.4 0.5 0.8 -0.01

0.01

ACF Mean 0.603 0.353 -0.198 0.809 -0.01 0.

Std. Dev. (0.024) (0.251) (2.706) (0.23) (0.003) (0.061)

ACF-N Mean 0.608 0.355 -0.038 0.811 -0.009 -0.02

Std. Dev. (0.037) (0.234) (2.394) (0.212) (0.027) (0.337)

0.03

ACF Mean 0.603 0.353 -0.182 0.809 -0.01 0.019

Std. Dev. (0.024) (0.247) (2.457) (0.224) (0.003) (0.061)

ACF-N Mean 0.608 0.354 -0.03 0.812 -0.01 -0.009

Std. Dev. (0.035) (0.23) (2.218) (0.206) (0.003) (0.686)

0.05

ACF Mean 0.603 0.354 -0.16 0.808 -0.01 0.038

Std. Dev. (0.024) (0.242) (2.212) (0.218) (0.003) (0.062)

ACF-N Mean 0.608 0.353 -0.027 0.813 -0.01 0.038

Std. Dev. (0.034) (0.225) (2.002) (0.201) (0.003) (0.27)

0.07

ACF Mean 0.604 0.354 -0.132 0.808 -0.01 0.057

Std. Dev. (0.024) (0.237) (1.978) (0.212) (0.003) (0.062)

ACF-N Mean 0.607 0.354 0.013 0.814 -0.01 0.055

Std. Dev. (0.033) (0.219) (1.746) (0.193) (0.003) (0.143)

0.09

ACF Mean 0.604 0.357 -0.099 0.805 -0.01 0.076

Std. Dev. (0.024) (0.23) (1.759) (0.204) (0.003) (0.063)

ACF-N Mean 0.607 0.355 0.044 0.814 -0.01 0.071

Std. Dev. (0.033) (0.212) (1.546) (0.184) (0.003) (0.136)

0.1

ACF Mean 0.604 0.36 -0.08 0.803 -0.01 0.086

Std. Dev. (0.024) (0.226) (1.65) (0.2) (0.003) (0.063)

ACF-N Mean 0.607 0.356 0.059 0.814 -0.01 0.08

Std. Dev. (0.033) (0.208) (1.443) (0.179) (0.003) (0.151)

0.3

ACF Mean 0.606 0.643 0.054 0.414 -0.024 0.446

Std. Dev. (0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N Mean 0.605 0.388 0.417 0.813 -0.01 0.299

Std. Dev. (0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.5

ACF Mean 0.645 0.362 -5.659 0.723 -0.012 0.651

Std. Dev. (0.151) (0.156) (270.251) (0.645) (0.063) (8.7)

ACF-N Mean 0.648 0.351 -3.503 0.77 -0.012 0.704

Std. Dev. (0.1) (0.101) (204.646) (0.311) (0.034) (6.386)

0.7

ACF Mean 0.682 0.318 -3.839 0.668 -0.012 1.148

Std. Dev. (0.19) (0.19) (217.5) (4.683) (0.616) (11.871)

ACF-N Mean 0.685 0.314 4.003 0.592 -0.001 0.671

Std. Dev. (0.144) (0.144) (91.859) (0.669) (0.099) (2.519)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure and ACF-N
indicating the modified procedure to account for network effects. Networks are exogenous Erdos-Renyi (binomial) graphs with 0.05 density.
The data-generating process for productivity is quadratic AR1 with endogenous network effects.
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Table 17: Effect of ρ on Bias and Precision (Quadratic AR1)

ρ Estimator

Elasticities Productivity Process Coefficients

α` αk β1
ρ1

ρ2 λ

True 0.6 0.4 0.5 -0.01 0.3

0.1

ACF Mean 0.644 0.413 -271.942 0.485 -0.047 52.923

Std. Dev. (0.138) (0.384) (8697.007) (12.757) (1.038) (1683.731)

ACF-N Mean 0.65 0.39 2.029 0.113 -0.009 0.151

Std. Dev. (0.1) (0.365) (90.035) (0.514) (0.041) (10.864)

0.2

ACF Mean 0.634 0.362 3.014 0.255 -0.003 -0.094

Std. Dev. (0.131) (0.234) (30.083) (1.139) (0.109) (5.893)

ACF-N Mean 0.647 0.343 -0.796 0.205 -0.01 0.14

Std. Dev. (0.099) (0.219) (37.532) (0.127) (0.031) (7.268)

0.3

ACF Mean 0.628 0.369 1.427 0.286 -0.001 0.069

Std. Dev. (0.109) (0.161) (6.855) (0.587) (0.166) (3.382)

ACF-N Mean 0.645 0.345 -0.132 0.312 -0.009 1.074

Std. Dev. (0.095) (0.151) (31.101) (0.103) (0.03) (24.603)

0.4

ACF Mean 0.617 0.381 1.412 0.314 0.028 -0.083

Std. Dev. (0.086) (0.122) (15.72) (2.994) (1.188) (11.549)

ACF-N Mean 0.638 0.354 0.251 0.409 -0.01 0.45

Std. Dev. (0.084) (0.118) (21.734) (0.086) (0.028) (8.122)

0.5

ACF Mean 0.609 0.389 0.831 0.518 -0.013 0.268

Std. Dev. (0.061) (0.094) (1.139) (0.193) (0.104) (0.935)

ACF-N Mean 0.628 0.364 1.104 0.512 -0.011 0.105

Std. Dev. (0.072) (0.103) (13.659) (0.066) (0.022) (7.008)

0.6

ACF Mean 0.606 0.398 0.758 0.609 -0.009 0.253

Std. Dev. (0.044) (0.082) (0.549) (0.053) (0.017) (0.146)

ACF-N Mean 0.619 0.373 1.087 0.613 -0.01 0.186

Std. Dev. (0.057) (0.09) (6.734) (0.064) (0.016) (1.727)

0.7

ACF Mean 0.601 0.465 0.575 0.665 -0.012 0.29

Std. Dev. (0.043) (0.086) (0.38) (0.081) (0.014) (0.1)

ACF-N Mean 0.608 0.385 0.642 0.714 -0.01 0.279

Std. Dev. (0.036) (0.081) (2.109) (0.053) (0.005) (0.47)

0.8

ACF Mean 0.606 0.643 0.054 0.414 -0.024 0.446

Std. Dev. (0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N Mean 0.605 0.388 0.417 0.813 -0.01 0.299

Std. Dev. (0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.9

ACF Mean 0.708 0.113 -5.964 0.65 -0.028 0.346

Std. Dev. (0.093) (0.273) (33.081) (4.953) (0.367) (4.293)

ACF-N Mean 0.603 0.386 0.024 0.922 -0.01 0.296

Std. Dev. (0.028) (0.09) (1.165) (0.122) (0.002) (0.033)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure
and ACF-N indicating the modified procedure to account for network effects. Networks are exogenous Erdos-Renyi
(binomial) graphs with 0.05 density. The data-generating process for productivity is quadratic AR1 with endogenous
network effects.
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D Variable Construction

� Sales: Net sales deflated by an industry deflator for GDP.

� Labor: Number of employees

� Capital: Total property, plant and equipment (gross) before depreciation. Following the

method in İmrohoroğlu and Tüzel (2014), I deflate using the yearly implicit price deflator

for fixed investment at the calculated age of capital. Capital age is computed as the ratio

of accumulated depreciation to current depreciation, smoothed by taking a 3-year moving

average. The year at which the deflator is applied is current year − average capital age. All

years before 1929 are bottom-coded because that is the earliest year in the deflator data.

� Materials: Estimated as Cost of goods sold plus Selling, General and Administrative Expenses

minus labor costs. Salaries and wage costs are missing for most firms, so I estimate labor

costs by multiplying number of employees by 2-digit industry wages per full-time equivalent

employee. Figure 18 shows that these estimates strongly correlate with wage costs that were

reported in the data. Estimated materials are deflated by the 2-digit industry price indices

for intermediate inputs.

� Value-added: Sales minus materials, deflated by industry price indices for value-added.

� Exports: International Sales as reported in the geographic segments information on annual

reports. These figures are often reported by location of the final customer, but do not always

differentiate between exports from the US and sales by multinational firms within foreign

countries. However, to the extent that this contains some measure of exporting, a dummy for

exporting based on positive values of this variable should have minimal measurement error.

� Industry: Industry classifications are based on those used in input-output tables from the Bu-

reau of Economic Analysis (BEA). There are 65 industries from before 1997 and 71 industries

from 1997 onwards. These roughly correspond to 3-digit NAICS and 2-digit SIC codes. Com-

pustat’s annual financials only reports the latest industry classification, therefore, I obtain

historical NAICS codes from the primary business segment. I also replace SIC codes for com-

panies that are incorrectly coded as ”99” (unclassifiable) from annual reports in the EDGAR

database and business segment data. These are then converted to BEA industry codes using

the concordances provided by the bureau. All deflators, price indices and input-output tables

are based on these BEA industry codes. However, in regressions I combine industries with

too few observations. These include: transit and ground transportation with general trans-

portation and warehousing, and other transportation and support activities; Funds, trusts

and other financial vehicles combined with securities, commodity contracts and investments;

Legal services with miscellaneous professional services; Ambulatory health, hospitals, nursing

and residential care with social assistance. This results in 41 industry groups.
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Table 18: Sample Size by Industry and Sector

Sector Industry Observations

Mining Mining, except oil and gas 445
Oil and gas extraction 2323
Support activities for mining 691

Utilities Utilities 2427
Construction Construction 481
Durables Manufacturing Electrical equipment, appliances, and components 1063

Fabricated metal products 1190
Furniture and related products 303
Machinery 2571
Miscellaneous manufacturing 1490
Motor vehicles, bodies and trailers, and parts 1975
Nonmetallic mineral products 368
Other transportation equipment 1059
Primary metals 902
Wood products 192

Non-Durables Manufacturing Apparel and leather and allied products 1410
Chemical products 3959
Food and beverage and tobacco products 1561
Paper products 601
Petroleum and coal products 1068
Plastics and rubber products 778
Printing and related support activities 223
Textile mills and textile product mills 448

Electronics Manufacturing Computer and electronic products 9581
Wholesale Wholesale trade 2215
Retail Food and beverage stores 347

General merchandise stores 574
Motor vehicle and parts dealers 153
Other retail 1303

Transport and Warehousing Air transportation 422
Other transportation and support activities 265
Pipeline transportation 487
Rail transportation 238
Transit and ground passenger transportation 14
Transportation and warehousing 22
Truck transportation 322
Warehousing and storage 13
Water transportation 284

Information Broadcasting and telecommunications 2213
Data processing, internet publishing, and other information services 633
Motion picture and sound recording industries 292
Publishing industries, except internet (includes software) 1788

FIRE Federal Reserve banks, credit intermediation, and related activities 554
Funds, trusts, and other financial vehicles 25
Insurance carriers and related activities 397
Real estate 222
Rental and leasing services and lessors of intangible assets 445
Securities, commodity contracts, and investments 247

Services Accommodation 117
Administrative and support services 664
Ambulatory health care services 263
Amusements, gambling, and recreation industries 56
Computer systems design and related services 1162
Educational services 46
Food services and drinking places 238
Hospitals 76
Legal services 4
Miscellaneous professional, scientific, and technical services 998
Nursing and residential care facilities 42
Other services, except government 115
Performing arts, spectator sports, museums, and related activities 30
Social assistance 3
Waste management and remediation services 159

This table reports the number firm-year observations in the sample by primary sector and industry
as determined by the BEA industry classification.
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Figure 18: Estimated and Reported Labor Ex-
penses

This figure shows the correlation between labor expenses re-
ported in Compustat and labor costs estimated using industry
wage expenditure.

E Additional Results and Robustness Checks

E.1 Value-Added Estimates
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Table 19: Productivity Spillovers by Relationship Dynamics (Value-Added)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

ACF
0.0009 0.0023 0.002 0.0005

(0.0014) (0.0014) (0.0011) (0.001)

ACF-N
0.0008 0.0022 0.0021 0.0007

(0.0014) (0.0014) (0.0011) (0.001)

ACF-ND
0.0008 0.001 0.003 0.0003

(0.0016) (0.0015) (0.0013) (0.0011)

1987-1996

ACF
0.0001 0.0003 -0.0006 0.001

(0.0009) (0.001) (0.0007) (0.0006)

ACF-N
0.0002 0.0003 -0.0011 0.0005

(0.0009) (0.001) (0.0007) (0.0006)

ACF-ND
0.0004 0.0004 -0.0012 0.0006
(0.001) (0.001) (0.0007) (0.0007)

1997-2006

ACF
0.0008 0.0004 0.0003 0.0014

(0.0005) (0.0005) (0.0004) (0.0004)

ACF-N
0.0008 0.0004 0.0006 0.0017

(0.0005) (0.0005) (0.0004) (0.0004)

ACF-ND
0.0005 0.0004 0.0006 0.002

(0.0005) (0.0004) (0.0005) (0.0004)

2007-2016

ACF
0.0012 0.0003 0.0011 0.0003

(0.0006) (0.0004) (0.0004) (0.0003)

ACF-N
0.0011 0.0003 0.0013 0.0004

(0.0006) (0.0004) (0.0004) (0.0003)

ACF-ND
0.0012 0.0003 0.0011 0.0002

(0.0007) (0.0004) (0.0004) (0.0003)

All

ACF
0.0007 0.0008 0.0006 0.0009

(0.0003) (0.0003) (0.0003) (0.0002)

ACF-N
0.0007 0.0008 0.0008 0.001

(0.0003) (0.0003) (0.0003) (0.0002)

ACF-ND
0.0007 0.0008 0.0007 0.0011

(0.0004) (0.0003) (0.0003) (0.0002)

This table reports coefficients of a linear productivity evolution process with endogenous net-
work effects estimated on US firms in Compustat. Each TFP measure is from a value-added
production function (in logs) estimated with the standard Ackerberg et al. (2015) procedure
(ACF), or with modifications to accommodate network effects (ACF-N) and network differenc-
ing (ACF-ND). Network effects for ACF are estimated using the generalized 2SLS procedure
for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Standard
errors are in parentheses. All specifications include industry and year fixed effects.
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Table 20: Productivity Spillovers by Sector (Value-Added)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining
0.0037 -0.0004 0.009 0.0027 0.0014 -0.0057 -0.0011 -0.0026 0.0121 0.0135 -0.001 -0.0035

(0.0018) (0.0011) (0.0092) (0.0013) (0.0009) (0.0081) (0.0034) (0.0025) (0.0055) (0.0068) (0.0036) (0.0025)

Utilities
0.0029 0.0025 0.0034 -0.0001 0.0022 0.0025 0.0052 -0.0023 0.0024 -0.0013 -0.003 0.0033

(0.0018) (0.001) (0.004) (0.001) (0.0011) (0.0021) (0.0033) (0.0028) (0.0021) (0.0054) (0.0107) (0.0034)

Construction
0.0151 0.0014 0.009 0.0013 -0.0014 -0.0018 -0.0107 -0.0057 0.0047 0.0004 0.001 0.0096

(0.0172) (0.0013) (0.0049) (0.0023) (0.0009) (0.0032) (0.0068) (0.0037) (0.0091) (0.001) (0.0033) (0.0107)

Durables Mfg
0.0008 -0.0007 0.0171 -0.0002 -0.0019 -0.0017 0.0013 -0.0014 -0.0002 -0.0011 0.0027 0.003

(0.0018) (0.0008) (0.0084) (0.0006) (0.0006) (0.0006) (0.0012) (0.0007) (0.0013) (0.0013) (0.0035) (0.0014)
Non-Durables
Mfg

0.0023 0.0007 0.0048 -0.0011 -0.0011 -0.0006 0.003 -0.0043 0.0035 -0.0012 -0.0073 -0.0059
(0.0019) (0.0011) (0.0061) (0.0006) (0.0005) (0.0011) (0.0012) (0.0007) (0.0019) (0.0016) (0.0035) (0.0017)

Electronics Mfg
-0.0087 -0.0011 -0.008 0.0004 -0.0014 0.0012 0.0042 -0.0013 0.0008 -0.0006 0.0049 -0.0
(0.0081) (0.0014) (0.0084) (0.0006) (0.0012) (0.0006) (0.0011) (0.0013) (0.0013) (0.0008) (0.004) (0.0014)

Wholesale
0.0007 -0.0005 0.0214 0.0007 0.001 0.0024 0.0061 -0.002 -0.0022 -0.0004 -0.0068 -0.0012

(0.0042) (0.0013) (0.0216) (0.0007) (0.0006) (0.0008) (0.0025) (0.0009) (0.0026) (0.0012) (0.0058) (0.0015)

Retail
-0.0052 -0.0082 0.0023 0.0018 0.0006 0.005 0.0033 0.0001 -0.0012 0.0044 0.0086 0.0002
(0.0039) (0.0032) (0.0169) (0.0007) (0.0006) (0.0018) (0.0016) (0.0012) (0.0013) (0.0022) (0.0032) (0.0022)

Transport and
Warehousing

0.0031 -0.0003 0.013 0.0006 0.0005 -0.0016 0.0162 0.0025 0.0004 -0.0 0.0161 -0.0034
(0.0029) (0.0008) (0.0084) (0.0013) (0.0006) (0.0029) (0.0059) (0.0019) (0.0016) (0.0019) (0.0044) (0.0024)

Information
0.0071 0.0002 0.0036 -0.0026 -0.0017 0.0011 0.0055 -0.0003 -0.0042 0.002 0.0029 -0.0022

(0.0052) (0.0013) (0.0064) (0.0012) (0.0011) (0.0007) (0.0021) (0.0014) (0.0014) (0.0009) (0.0019) (0.0015)
Finance, Insur &
Real Estate

0.002 -0.0049 -0.0054 -0.0007 -0.0008 0.0031 0.0038 -0.0022 0.0027 -0.0013 -0.0008 0.0009
(0.0034) (0.0045) (0.003) (0.0012) (0.0006) (0.0009) (0.0066) (0.001) (0.0012) (0.0012) (0.0017) (0.0015)

Services
-0.0006 -0.0004 0.0055 0.0004 -0.001 0.0003 -0.0004 0.0003 -0.0014 0.0004 0.0011 0.0007
(0.0027) (0.001) (0.015) (0.0008) (0.0006) (0.0007) (0.002) (0.0016) (0.0015) (0.0012) (0.0017) (0.0015)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP measure
is from a gross output production function (in logs) estimated with the standard Ackerberg et al. (2015) procedure (ACF), or with modifications to accommodate
network effects and network differencing (ACF-ND). Network effects for ACF are estimated using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA industry classification. Standard errors are in parentheses. All
specifications include industry and year fixed effects.
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Table 21: Productivity Spillovers by Firm Size & Relationship Direction (Value-Added)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large

0.0002 0.0005 0.0002 0.0007 0.0008
(0.0015) (0.0007) (0.0005) (0.0004) (0.0003)

Small
0.0066 0.0007 -0.0021 -0.0001 0.002

(0.0019) (0.001) (0.0007) (0.0006) (0.0004)

Suppliers
Large

0.0002 -0.0009 0.0012 0.0007 0.0004
(0.0013) (0.0006) (0.0004) (0.0003) (0.0002)

Small
0.0339 0.0006 -0.0012 -0.0038 0.0028
(0.018) (0.005) (0.0046) (0.0031) (0.0027)

Small

Customers
Large

-0.0033 -0.0046 -0.0088 -0.0043 -0.0054
(0.0047) (0.0048) (0.004) (0.0022) (0.0023)

Small
0.0125 -0.0059 -0.0021 0.0022 -0.0003

(0.0071) (0.0062) (0.0029) (0.0059) (0.0028)

Suppliers
Large

0.0013 -0.0001 0.0017 0.0005 0.0007
(0.0011) (0.0007) (0.0005) (0.0003) (0.0002)

Small
0.0218 -0.0004 0.0045 -0.0023 0.0039

(0.0088) (0.0046) (0.0041) (0.0046) (0.0025)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on
US firms in Compustat. Each TFP measure is from a value-added production function (in logs) estimated with the
standard Ackerberg et al. (2015) procedure (ACF), or with modifications to accommodate network effects (ACF-N)
and network differencing (ACF-ND). Network effects for ACF are estimated using the generalized 2SLS procedure
for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with
500 or more employees.Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table 22: Productivity Spillovers by Varying Firm Size Cutoffs (Value-Added)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large

0.0008 0.0008 -0.0 0.0002
(0.0003) (0.0003) (0.0003) (0.0003)

Small
0.002 0.003 0.0014 0.0022

(0.0004) (0.0004) (0.0004) (0.0004)

Suppliers
Large

0.0004 0.0002 -0.0006 -0.0
(0.0002) (0.0002) (0.0002) (0.0002)

Small
0.0028 0.0049 0.0037 0.0048

(0.0027) (0.0015) (0.001) (0.0006)

Small

Customers
Large

-0.0054 -0.002 -0.0009 -0.0003
(0.0023) (0.0015) (0.0009) (0.0005)

Small
-0.0003 -0.0014 0.0004 0.0019
(0.0028) (0.0018) (0.0006) (0.0007)

Suppliers
Large

0.0007 0.0006 -0.0001 0.0
(0.0002) (0.0002) (0.0003) (0.0003)

Small
0.0039 0.0038 0.0039 0.0032

(0.0025) (0.0015) (0.0006) (0.0006)

This table reports coefficients of a linear productivity evolution process with endogenous network
effects estimated on US firms in Compustat. Each TFP measure is from a value-added production
function (in logs) estimated with the standard Ackerberg et al. (2015) procedure (ACF), or with mod-
ifications to accommodate network effects (ACF-N) and network differencing (ACF-ND). Network
effects for ACF are estimated using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as many
employees as the cutoffs indicated above. The median cutoff is determined by industry and year.
Standard errors are in parentheses. All specifications include industry and year fixed effects.
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E.2 Unweighted Estimates
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Table 23: Endogenous Productivity Spillovers
(Gross Output, Unweighted)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

GNR
0.8403 0.0068

(0.0205) (0.0049)

GNR-N
0.8391 0.0074

(0.0207) (0.0049)

GNR-ND
0.8248 -0.0001

(0.0228) (0.0058)

1987-1996

GNR
0.8314 -0.0065

(0.0244) (0.0039)

GNR-N
0.8312 -0.0063

(0.0244) (0.0039)

GNR-ND
0.8232 -0.0093

(0.0271) (0.0039)

1997-2006

GNR
0.8583 0.0001
(0.013) (0.0043)

GNR-N
0.8588 0.0003

(0.0132) (0.0043)

GNR-ND
0.8584 0.0002

(0.0145) (0.0055)

2007-2016

GNR
0.8964 0.0115

(0.0214) (0.0048)

GNR-N
0.8964 0.0113

(0.0214) (0.005)

GNR-ND
0.889 0.0096

(0.0229) (0.0047)

All

GNR
0.9038 0.0076

(0.0066) (0.0023)

GNR-N
0.9027 0.0086

(0.0067) (0.0024)

GNR-ND
0.8998 0.0069

(0.0073) (0.0025)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a gross output production function (in logs) esti-
mated with the standard Gandhi et al. (2020) procedure
(GNR), or with modifications to accommodate network
effects (GNR-N) and network differencing (GNR-ND).
Network effects for GNR are estimated using the gen-
eralized 2SLS procedure in Lee (2003); Bramoullé et al.
(2009). Interaction matrices for network effects are un-
weighted. Standard errors are in parentheses. All spec-
ifications include industry and year fixed effects.

Table 24: Productivity Spillovers by
Relationship Direction (Gross Output,

Unweighted)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

GNR
0.0036 0.0167
(0.004) (0.005)

GNR-N
0.0022 0.017

(0.0033) (0.0045)

GNR-ND
-0.0025 0.0127
(0.0036) (0.004)

1987-1996

GNR
0.0063 -0.008
(0.004) (0.0036)

GNR-N
0.0079 -0.0122

(0.0039) (0.0035)

GNR-ND
-0.0056 -0.012
(0.0044) (0.0079)

1997-2006

GNR
0.0013 0.0023

(0.0005) (0.0005)

GNR-N
0.001 0.0033

(0.0005) (0.0005)

GNR-ND
0.0006 0.0041

(0.0006) (0.0006)

2007-2016

GNR
0.0006 0.0016

(0.0004) (0.0006)

GNR-N
0.0004 0.0024

(0.0004) (0.0008)

GNR-ND
0.0002 0.0025

(0.0004) (0.0008)

All

GNR
0.0025 0.0053

(0.0008) (0.0009)

GNR-N
0.0024 0.0079

(0.0008) (0.0011)

GNR-ND
0.0015 0.008

(0.0008) (0.001)

This table reports coefficients of a linear productivity
evolution process with endogenous network effects esti-
mated on US firms in Compustat. Each TFP measure
is from a gross output production function (in logs) esti-
mated with the standard Gandhi et al. (2020) procedure
(GNR), or with modifications to accommodate network
effects (GNR-N) and network differencing (GNR-ND).
Network effects for GNR are estimated using the gener-
alized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). In-
teraction matrices for network effects are unweighted.
Standard errors are in parentheses. All specifications
include industry and year fixed effects.
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Table 25: Productivity Spillovers by Relationship Dynamics (Gross Output,
Unweighted)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

GNR
0.0037 0.001 0.0149 0.0092

(0.0034) (0.0039) (0.0038) (0.0039)

GNR-N
0.0013 0.0004 0.0138 0.0095

(0.0024) (0.0026) (0.0029) (0.0028)

GNR-ND
0.0001 -0.0028 0.0157 0.0088

(0.0031) (0.0031) (0.0032) (0.0035)

1987-1996

GNR
0.0077 0.0033 -0.003 -0.0121

(0.0035) (0.0039) (0.0038) (0.0037)

GNR-N
-0.0036 0.0165 -0.0041 -0.0295
(0.0048) (0.0068) (0.0081) (0.0077)

GNR-ND
-0.0116 0.0101 0.0006 -0.0214
(0.0046) (0.0065) (0.009) (0.0088)

1997-2006

GNR
-0.0007 0.0005 0.0003 0.0013
(0.0004) (0.0004) (0.0003) (0.0003)

GNR-N
-0.0009 0.0003 0.0015 0.0026
(0.0004) (0.0004) (0.0004) (0.0004)

GNR-ND
-0.0011 0.0002 0.002 0.0031
(0.0005) (0.0005) (0.0005) (0.0004)

2007-2016

GNR
0.0005 0.0005 0.0015 0.0013

(0.0004) (0.0004) (0.0005) (0.0004)

GNR-N
0.0004 0.0004 0.0025 0.0022

(0.0004) (0.0004) (0.0007) (0.0005)

GNR-ND
0.0001 0.0003 0.0025 0.0022

(0.0004) (0.0004) (0.0008) (0.0006)

All

GNR
0.0008 0.0017 0.0029 0.0038

(0.0006) (0.0006) (0.0006) (0.0006)

GNR-N
0.0009 0.0017 0.0066 0.0076

(0.0007) (0.0007) (0.0009) (0.0008)

GNR-ND
0.0005 0.0012 0.007 0.0081

(0.0007) (0.0008) (0.001) (0.0009)

This table reports coefficients of a linear productivity evolution process with endogenous
network effects estimated on US firms in Compustat. Each TFP measure is from a gross
output production function (in logs) estimated with the standard Gandhi et al. (2020) pro-
cedure (GNR), or with modifications to accommodate network effects (GNR-N) and network
differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS
procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017).
Interaction matrices for network effects are unweighted. Standard errors are in parentheses.
All specifications include industry and year fixed effects.
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Table 26: Productivity Spillovers by Sector (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining
-0.0082 -0.0093 -0.0062 0.0017 0.0071 -0.0155 0.0165 0.0088 0.0098 0.0343 0.0042 0.0027
(0.0062) (0.0037) (0.0317) (0.0048) (0.0026) (0.0312) (0.01) (0.0077) (0.0088) (0.0107) (0.0082) (0.0077)

Utilities
-0.0031 -0.0006 0.006 0.0029 0.0097 0.0127 0.0041 -0.0027 0.0018 -0.0023 -0.0035 0.01
(0.0057) (0.0027) (0.0102) (0.0026) (0.002) (0.0079) (0.008) (0.0081) (0.0063) (0.0121) (0.0173) (0.0058)

Construction
-0.0189 0.0012 0.0144 0.0052 -0.0057 -0.0076 0.0109 -0.0072 0.0164 0.0041 -0.0002 0.0276
(0.0303) (0.004) (0.0112) (0.0057) (0.0035) (0.0128) (0.0073) (0.0087) (0.0222) (0.0034) (0.0059) (0.0213)

Durables Mfg
0.0074 0.0002 0.0255 0.0024 0.0012 -0.0036 0.0076 -0.0016 0.0028 0.0037 0.0049 0.003

(0.0063) (0.0029) (0.0223) (0.0021) (0.0016) (0.0023) (0.0026) (0.0016) (0.0034) (0.0033) (0.0061) (0.0033)

Non-Durables Mfg
-0.0059 -0.0014 -0.0028 0.0 -0.0009 -0.0065 0.0033 -0.006 -0.0063 -0.0025 -0.0169 -0.0098
(0.005) (0.0027) (0.0129) (0.0017) (0.0013) (0.0046) (0.0026) (0.0015) (0.0037) (0.0043) (0.0082) (0.0037)

Electronics Mfg
-0.0413 -0.015 -0.0262 -0.0001 -0.004 0.0231 0.0126 0.0021 0.0076 0.0005 0.0203 0.0002
(0.0478) (0.0053) (0.034) (0.0044) (0.0036) (0.0028) (0.0029) (0.0031) (0.0055) (0.0029) (0.0089) (0.0041)

Wholesale
-0.005 0.0122 0.0115 0.0021 0.0031 0.016 0.0096 0.0016 0.0032 0.0021 -0.0125 0.0026

(0.0114) (0.0073) (0.0157) (0.002) (0.0012) (0.002) (0.0037) (0.0013) (0.0101) (0.0023) (0.0114) (0.0038)

Retail
0.0109 -0.0035 -0.0072 0.0071 0.0029 0.0187 0.0101 0.0012 -0.0012 0.0086 0.0175 0.0016

(0.0114) (0.01) (0.0154) (0.0027) (0.0013) (0.0035) (0.0018) (0.0025) (0.0038) (0.004) (0.0045) (0.0043)

Transport and Warehousing
0.0075 0.0111 0.0536 0.0035 0.0031 0.0063 0.0074 0.0021 -0.003 0.0007 -0.0084 0.0
(0.009) (0.0032) (0.0183) (0.004) (0.0019) (0.0057) (0.0105) (0.0038) (0.004) (0.0079) (0.007) (0.01)

Information
0.0235 -0.0023 0.0083 -0.0034 -0.001 0.0145 0.0062 -0.001 -0.0174 0.004 0.0064 -0.0071

(0.0114) (0.0066) (0.0165) (0.0038) (0.0027) (0.0024) (0.0047) (0.0025) (0.0046) (0.0027) (0.0046) (0.0038)

Finance, Insur & Real Estate
0.0003 0.0048 -0.013 -0.0 -0.0044 0.0129 -0.0024 0.0017 0.0043 0.004 -0.0019 0.0047

(0.0108) (0.0137) (0.0124) (0.0043) (0.0024) (0.0033) (0.0144) (0.0019) (0.0042) (0.003) (0.0042) (0.0034)

Services
0.0032 -0.0086 0.0082 0.0084 0.004 0.0021 0.008 0.004 0.0023 0.005 0.0088 0.0024

(0.0113) (0.0035) (0.0245) (0.0022) (0.0022) (0.0027) (0.0069) (0.0025) (0.0048) (0.003) (0.0047) (0.0036)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP
measure is from a gross output production function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with modifications to
accommodate network effects (GNR-N) and network differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS procedure for
heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA industry classification. Interaction
matrices for network effects are unweighted. Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table 27: Productivity Spillovers by Firm Size & Relationship Direction (Gross Output,
Unweighted)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large

0.001 0.0028 -0.0001 0.0003 0.0019
(0.0034) (0.0073) (0.0005) (0.0004) (0.0008)

Small
-0.0039 -0.0019 0.0006 -0.0004 0.0019
(0.0042) (0.0056) (0.0006) (0.0006) (0.001)

Suppliers
Large

0.0151 -0.0252 0.0025 0.0026 0.0081
(0.0036) (0.0108) (0.0004) (0.0007) (0.001)

Small
0.0569 -0.0686 0.0047 -0.005 0.0139

(0.0304) (0.0216) (0.0025) (0.0025) (0.0076)

Small

Customers
Large

-0.0134 -0.0778 -0.0063 -0.0059 -0.009
(0.0117) (0.0468) (0.0028) (0.0064) (0.0075)

Small
0.0002 -0.051 0.0 -0.0008 -0.0044

(0.0143) (0.0392) (0.0022) (0.0027) (0.0052)

Suppliers
Large

0.0138 -0.0125 0.0023 0.0022 0.008
(0.0039) (0.0058) (0.0005) (0.0006) (0.0009)

Small
0.0581 -0.0154 0.0033 0.0 0.0074

(0.0272) (0.0137) (0.002) (0.003) (0.0052)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated
on US firms in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with
the standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N)
and network differencing (GNR-ND). Network effects for ACF are estimated using the generalized 2SLS procedure
for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with
500 or more employees.Interaction matrices for network effects are unweighted. Standard errors are in parentheses.
All specifications include industry and year fixed effects.
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Table 28: Productivity Spillovers by Varying Firm Size Cutoffs (Gross Output,
Unweighted)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large

0.0019 0.0016 0.0014 0.001
(0.0008) (0.0008) (0.0008) (0.0008)

Small
0.0019 0.0033 0.0017 0.0014
(0.001) (0.0011) (0.001) (0.001)

Suppliers
Large

0.0081 0.0078 0.006 0.0087
(0.001) (0.001) (0.0008) (0.001)

Small
0.0139 0.0093 0.0084 0.0091

(0.0076) (0.0035) (0.0027) (0.0016)

Small

Customers
Large

-0.009 -0.001 -0.0039 0.0018
(0.0075) (0.006) (0.0038) (0.0015)

Small
-0.0044 -0.0051 0.0007 0.0026
(0.0052) (0.0036) (0.0012) (0.0012)

Suppliers
Large

0.008 0.0086 0.0079 0.0073
(0.0009) (0.001) (0.0012) (0.0011)

Small
0.0074 0.0071 0.009 0.0087

(0.0052) (0.0032) (0.0013) (0.0013)

This table reports coefficients of a linear productivity evolution process with endogenous network
effects estimated on US firms in Compustat. Each TFP measure is from a gross output production
function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with mod-
ifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network
effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects
in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as
many employees as the cutoffs indicated above. The median cutoff is determined by industry and
year. Interaction matrices for network effects are unweighted. Standard errors are in parentheses.
All specifications include industry and year fixed effects.
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F Bootstrap for Network Data

F.1 Residual-based resampling

Resampling network data needs to preserve the dependence structure between firms and across

time. In my empirical application, I use the residual-based bootstrap whose asymptotic properties

have been studied in the context of cross-sectional spatially correlated data by Jin and Lee (2012).

I modify the procedure by treating my unbalanced panel as repeated cross-sections. I estimate the

model, and obtain my first stage estimates ϕ̂ and residuals ε̂t. If the residuals do not have zero

mean, I subtract the empirical mean from each residual and obtain ε̃t. Then, for each t = {1, · · · , T}
I draw samples of size nt from ε̃nt. Sampling R times, I obtain {ε∗rt }Rr=1 and use these to generate

psuedosamples:

y∗rt = ϕ̂t + ε∗rt

I re-estimate both the production function and productivity process on these pseudo-samples,

obtaining a set of elasticities {(α∗r` , α∗r` )} and productivity process parameters {(ρ∗r, λ∗r,β∗r)}
that I use to construct standard errors and confidence intervals.

F.2 Vertex Resampling

An alternative procedure is the vertex bootstrap introduced by Snijders and Borgatti (1999). Al-

though this method is potentially more robust to model misspecification, the resulting adjacency

matrices are not guaranteed to satisfy the linear independence conditions for consistency of the

G2SLS peer effects estimator. The procedure is as follows: Let M be the set of unique firms across

all years in the data, with cardinality m and let R be the number of bootstrap repetitions.

For each bootstrap repetition r, randomly select m firms from M with replacement to form a

bootstrap sample Mr. Each firm k in Mr corresponds to a firm i(k) ∈ M ; I include observations

from all years in which i(k) appears in the original dataset. This is the standard block bootstrapping

procedure for panel data, which maintains the dependence structure across time within a firm.

Next, for each year, construct the adjacency matrix Art from the original At. Every pair of

firms (k, h) in Mr corresponds to (i(k), i(h)) in M . Therefore, if i(k) 6= i(h), then we can set

Akh,rt = Ai(k)i(h),t

However, At does not provide information on edges between duplicated nodes (i(k) = i(h)), because

in the original network, a firm could not buy from itself. But in the bootstrap sample, k and h

are considered different firms. Therefore, I fill in these edges by uniformly sampling from all the

elements of At. Finally, the interaction matrix Grt is constructed by row-normalizing Art.
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