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Abstract

This paper examines the extent to which productivity gains are transmitted

across US firms through buyer-supplier relationships. Many empirical stud-

ies measure firm-to-firm spillovers using firm-level productivity estimates de-

rived from control function approaches. However, these methods implicitly rule

out the interdependence of firms’ outcomes and decisions through productivity

spillovers. To address this limitation, I develop a framework to jointly estimate

network effects and firm-level productivity, while accounting for common pro-

ductivity shocks across firms and non-random buyer-supplier matching. Using

this method, I characterize productivity spillovers over the US production net-

work from 1977 to 2016. My results suggest that having 1% more productive

trading partners on average leads to 0.076% higher productivity in the long

run. Supplier spillovers, which are driven by both large and small firms, are 4

times greater than buyer effects, which are primarily generated by large firms.

Heterogeneity in spillovers within and across sectors also has implications for

overall productivity growth: aggregate spillovers tend to be much larger when

manufacturers are central in the production network than when retailers and

wholesalers are more central.
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1 Introduction

Production function estimation is at the heart of several important questions in eco-

nomics. From examining changes to market power and assessing the impact of trade

liberalization, to decomposing the sources of aggregate productivity growth, under-

standing firms’ decisions and their implications on market outcomes often hinges on

good estimates of firm-level total factor productivity (TFP).1

A significant finding of the literature on firm-level productivity is that businesses

exhibit marked differences in TFP, even within narrowly-defined industries, and a

vast body of work has sought to explain this dispersion.2 One possible explanation is

that firms may affect one another in ways that do not show up in the prices of inter-

mediate goods and services; they may experience spillovers from knowledge transfers

or agglomeration externalities. For example, in the trade literature, firms have been

found to impact the productivity of counterparts through activities such as foreign

direct investment (FDI) and exporting.3 Javorcik (2004) found that FDI in Lithuania

had a positive effect on the productivity of domestic firms through backward linkages,

and Keller and Yeaple (2009) documented the existence of horizontal spillovers from

multinationals to US firms. Likewise, Alvarez and López (2008) provided evidence

from Chile of positive productivity spillovers from domestic and foreign-owned ex-

porters on their suppliers, Alfaro-Urena et al. (2022) found TFP gains of 4% − 9%

among Costa Rican firms after they began to supply to multinational corporations,

and Amiti et al. (2023) documented significant productivity increases for Belgian firms

supplying to superstar firms including multinationals, exporters and large firms.

The present paper quantifies the transmission of productivity gains through buyer-

supplier relationships in the United States and examines how the existence of spillovers

affects the measurement of TFP. I consider spillovers not just from firm activities,

but directly from productivity as well. A firm’s TFP could increase or decline due to

the productivity of the firms with which it has a relationship. The expected direction

of this effect is not immediately clear: firms may learn from their peers and become

more productive or might free-ride on their trading partners’ efficiency. Empirical

investigations into direct efficiency spillovers are relatively new. Serpa and Krishnan

1See De Loecker and Syverson (2021) for a primer on firm-level productivity analysis.
2See Syverson (2011) for a review.
3See Keller (2010) for a review of the evidence on spillovers from FDI and exporting.
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(2018) examined this question with data on firm-level buyer-supplier relationships in

the US, whereas Bazzi et al. (2017) used input-output matrices to construct mea-

sures of the relationships between Indonesian firms. Both studies found that firms

enjoy significant boosts to productivity from their relationships with more productive

counterparts.

However, an important gap exists in the literature on productivity spillovers.

Many studies assess the existence of spillovers using TFP estimates obtained from

semi-parametric proxy variable/control function approaches. Introduced by Olley

and Pakes (1996) and refined in Levinsohn and Petrin (2003), Wooldridge (2009),

and Ackerberg et al. (2015) (hereafter OP, LP, Wooldridge and ACF respectively),

these methods assume that a firm’s future productivity depends only on its own past

productivity and characteristics. Alternative methods such as Gandhi et al. (2020)

that relies on first order conditions for identification also make the same assumption

on the productivity evolution process. This implies that each firm’s productivity

evolves independently, and implicitly rules out the existence of anticipated spillovers.

The contributions of this paper are three-fold. First, I show that when pro-

ductivity spillovers exist, failing to account for this interdependence could lead to

biased estimates of production function elasticities and TFP. As De Loecker (2013),

De Loecker et al. (2016), and Garcia-Marin and Voigtländer (2019) point out, our

conclusions about what drives changes in productivity are sensitive to how it is mea-

sured. De Loecker (2013) showed that measuring TFP under standard assumptions

can lead us to underestimate the impact of exporting on productivity. In Garcia-

Marin and Voigtländer (2019), the downward bias in learning-by-exporting estimates

arises from revenue-based productivity measures that cannot disentangle the lower

prices firms charge upon entry into export markets from their increased efficiency. In

this case, the direction of bias in spillover estimates is not as clear-cut. I find that,

depending on the structure of the network and persistence of productivity over time,

estimating spillovers on mismeasured TFP can lead us to overestimate network effects

in some cases and underestimate them in others.4

Second, I propose a modification to standard control function and first order con-

dition approaches that flexibly accounts for the presence of spillovers. To do so, I

apply results from the peer effects and spatial econometrics literatures including Lee

(2003); Bramoullé et al. (2009); Lee and Yu (2016), with an important distinction:

4See the online appendix in OA3 for Monte Carlo experiments demonstrating these biases.
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these papers deal with observed outcomes, whereas I jointly estimate the outcome

and spillovers. This comes at the cost of a few additional assumptions that are,

nonetheless, compatible with both the standard production function and network ef-

fects frameworks. A few studies have explicitly allowed for cross-sectional dependence

between firms through linkages in TFP estimation. Malikov and Zhao (2021) speci-

fied a framework in which a firm’s productivity depends on the lagged productivity of

nearby firms within the same industry to study inward FDI effects in China’s electric

machinery manufacturing sector. Merlevede and Theodorakopoulos (2023) examined

the impact of intangibles between European firms in ownership networks by allow-

ing affiliates to be influenced by the productivity of their parent companies and vice

versa.

My proposed approach offers three advantages relative to prior approaches. First,

I allow network effects to occur within the same period and do not impose that

spillovers only occur with a lag. Contemporaneous spillovers have been found to

matter empirically5 and my proposed approach can plausibly capture these effects

while also accommodating additional lagged effects. Second, I account for common

shocks that are localized within the network, which typically confounds the estima-

tion and interpretation of spillovers. Third, my approach can accommodate network

formation that is endogenous to productivity shocks. The estimator is therefore useful

in a broad range of contexts without overly strong assumption, and can be extended

to examine heterogeneous spillovers in the manner of Dieye and Fortin (2017) and

Patacchini et al. (2017), that vary by the nature of the relationship between firms

and their characteristics.

Third, I apply this methodology to examine the transmission of efficiency gains

through the production network of publicly listed firms in the United States from

1977 to 2016. I find evidence of positive productivity spillovers, with a stronger im-

pact from suppliers to customers: a 1% increase in its average supplier’s productivity

raises a firm’s long-run productivity by 0.083% whereas the customer effect would

be 0.018%. Furthermore, while both large and small suppliers generate positive pro-

ductivity spillovers on their customers, only large customers generate these gains for

their trading partners. Decomposing these network effects by sector reveals substan-

tial heterogeneity: retailers tend to be an important source of productivity gains to

5For example, (Keller, 2010) found that horizontal productivity spillovers from inward FDI in
the US showed up both within the same period and with a one-year lag.
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many other sectors, but do not benefit from their upstream relationships. Electronics

manufacturers, on the other hand, both benefit from and generate spillovers both

upstream and downstream. This sectoral variation in spillovers is positively asso-

ciated with patent citation patterns and negatively associated with employee flows

inter-sectoral employee flows.

My results highlight an additional channel for industrial policy to affect economic

growth. Given that a substantial portion of these spillovers can be attributed to

efficiency gains in distribution and information technology, policymakers could target

high-growth sectors that can generate these second-order effects. Furthermore, there

are significant differences in aggregate spillovers depending on which kinds of firms are

most central in the US economy: during the decades when manufacturers were more

central, aggregate spillovers from the 10 most central firms were often twice as large as

after taking into account sector-specific effects, compared to a homogeneous network

effect benchmark. By contrast, during the 2007-2016 period that featured greater

centrality of retailers and wholesalers, aggregate spillovers were lower when accounting

for sector-specific effects. This highlights another rationale for policymakers’ concerns

over the sectoral composition of the economy.

In the next section, I describe the data and features of the portion of the US

production network that I observe. Section 3 presents my empirical framework and

discusses the biases that arise from ignoring spillovers in the standard control function

approach. In section 4, I propose a procedure for estimating production functions in

the presence of various network effects and clarify the assumptions needed to obtain

valid estimates. I introduce a model of network formation in section 5 to account

for endogenous network selection. I consider extensions to the benchmark model

including a gross output production function in section 6. Section 7 presents my

empirical results and section 8 concludes.

2 Data: The US Production Network

I begin by describing the data with which I characterize the firm-level production

network within the US, to highlight features that are important for my empirical

methodology. To examine the magnitude and origins of productivity spillovers in the

US, I rely on a panel of publicly-listed firms in the Compustat database from 1977

to 2016. Compustat collects companies’ financial statements from form 10-K reports
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Table 1: Firm Characteristics

Mean SD Mean Mean

Sales 6.08 21.03 Mining 0.063 Wholesale 0.041
Sales per 1000 employees 0.5 4.12 Utilities 0.044 Retail 0.044
Value Added 1.85 5.47 Construction 0.009 Transport and Warehousing 0.038
Capital stock 5.4 21.41 Durables Manufacturing 0.204 Information 0.090
Materials 4.37 17.56 Non-Durables Manufacturing 0.184 Finance, Insurance & Real Estate 0.035
Employees (thousands) 18.95 62.02 Electronics Manufacturing 0.176 Services 0.073
Large firm (employees ≥ 500) 0.68 -

Observations 54557

This table reports average characteristics of firms in the sample. All monetary values are in 2009 billion USD.

filed with the US Securities and Exchange Commission (SEC). This provides detailed

information on firms’ sales, capital stock, expenses and employees. I supplement this

with industry-level deflators and wages from the US Bureau of Economic Analysis

(BEA) to construct the necessary variables to estimate a production function.6

Information on buyer-supplier links also comes from 10-K reports. Statement

no. 14 issued in December 1976 by the Financial Accounting Standards Board (FASB)

requires each firm to report any customers that are responsible for 10% or more of

its sales within a fiscal year. I conservatively match the reported customer names to

company financial data. The resulting network contains 18,872 unique buyer-supplier

pairs and 66,052 dyad-year observations.7

I restrict the firm-level sample to the businesses that either report or are reported

as customers, and have positive values of sales, capital stock, labor, and materials.

I discard firms in agriculture, forestry and fishing, because these industries have too

few observations in both the firm- and dyad-level datasets. This yields an unbalanced

panel of 8,353 firms and 55,557 firm-year observations.

Table 1 reports average firm characteristics by decade and over the full sample.

Due to the nature of the firms in question, and the restriction to companies with

customer or supplier data, firms in the sample tend to be large, averaging 19,000

employees and $6.08 billion in annual sales. Based on the BEA’s classification of

large enterprises as firms employing 500 or more workers, about two-thirds of the

sample are large firms. As shown in table 1, manufacturers comprise more than half

6See section A in the appendix for further details on variable construction.
7Other studies that have used this dataset to study the US production network include Atalay

et al. (2011), Lim et al. (2017) and Serpa and Krishnan (2018). I am grateful to the authors of
Atalay et al. (2011) for graciously sharing their matched buyer-supplier data with me.
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Figure 1: Average Firm Degree
Annual average out- and in-degrees (customers and
suppliers) for firms in the sample.

Figure 2: Value Traded in Relation-
ships
Annual average value traded by each buyer-supplier
pair and as a share of each seller’s total sales.

of the firms in the sample. Information and Services are the next largest sectors

represented in the sample.8

The observed sample of the production network is sparse; that is, the number

of connections per firm is low. Figure 1 shows that firms report 1 or 2 customers

on average, whereas the same customers are reported by about 3 or 4 suppliers.

Consistent with the 10% sales reporting requirement, reported customers tend to

be large; the average customer realizes about eight times as much in sales as the

average supplier in the data (see figure 6). This may be due to two factors: relatively

small firms are likely to have major customers and larger firms are likely to be major

customers. However, although the value traded in the average reported relationship is

sizable and increases over time, figure 2 indicates each individual relationship makes

up a declining share of the suppliers’ sales.

In figure 4, I examine features of the network that affect the identification of

spillovers within my framework. Network density, measured by the number of ob-

served links as a fraction of all possible links, does not exceed 0.28% in any year. The

network gets sparser at the beginning of the sample and denser after the mid-90s.

At the same time, network transitivity, the number of observed triads as a share of

all possible triads, trends upward throughout the sample, but does not exceed 1.2%.

In sections 3 and 4, I discuss the importance of density and transitivity for both

the biases in input elasticities from standard approaches and the performance of my

proposed estimator.

Each year, the production network is often dominated by a large cluster of firms

8See section A for a full list of industries in each sector.
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Figure 3: Clustering and Components
Number of connected components and largest com-
ponent as a share of all edges in the network.

Figure 4: Density and Transitivity
Density and transitivity of the network sample over
time.

connected to one another. Figure 3 shows that the number of edges in the largest

connected component as a share of all edges in the network ranges from 56% to

70%. This is largely due to the presence of a few well-connected firms, whereas the

remainder of the network consists of peripheral, small clusters.

Variations in clustering patterns over time reflect changes in the relative impor-

tance of each industry. Figure 5 reports the ten most central firms as measured by

the number of links a firm has as a share of all observed links. In the first ten years

of the sample, manufacturers of automotives and other durable goods dominated the

list. In the next decade, AT&T rose to the top of the list, and electronics manufac-

turers such as IBM had begun to emerge. In the 1997-2006 period, Walmart rose to

the top the list, and while automotive and electronics manufacturers still featured at

the top of the centrality distribution, their centrality had declined relative to earlier

decades. By the end of the sample, retailers and wholesalers had superseded most

manufacturers, with Walmart continuing to top the list.

Figure 7 shows the relationship between a firm’s labor productivity, as measured

by the natural log of sales per employee and that of its average buyer or seller.

The slope of the fitted regression line is 0.38, indicating a strong positive correlation

between the two quantities. Interpreting this relationship requires distinguishing

among several possible explanations. Foremost is the question of direction: does a

firm become more efficient by learning from its neighbors, or does causation move in

the opposite direction? And if a firm is simultaneously affected by and affecting its

partners, how can one pin down the magnitude of the effect? On the other hand,

this relationship may be driven by the sorting of firms; if more productive firms trade

8



Figure 5: Firm Centrality

Figure 6: Customer and Supplier
Sales
Annual average sales (in 2009 Billion USD) of
customers and suppliers in the sample.

Figure 7: Firms’ and Average
Trading Partners’ Labor Produc-
tivity
The slope of the fitted regression line is 0.38.

9



with one another, then this correlation is evidence of network formation rather than

spillovers. Yet another possibility is that supply chains are a transmission channel for

production and demand shocks, inducing the revenues of connected firms to move in

the same direction.

Each of these explanations has different implications for how productivity is mea-

sured: if there are spillovers due to learning, then firms’ input decisions will likely

be influenced by the efficiency of their suppliers or buyers, whereas unanticipated

common shocks are unlikely to affect input choices to the same degree. In the next

section, I introduce an empirical framework with the goal of distinguishing among

these channels, examining how they impact the measurement of TFP, and quantify-

ing the direction and magnitude of productivity spillovers.

3 Empirical Framework

Consider a production technology for firm i in period t with Hicks-neutral productiv-

ity:

Yit = F (Lit, Kit)e
ωit+εit (1)

where output, Yit is a function of labor, Lit and capital, Kit. Output is shifted by

an exogenous shock, eεit independent of all variables known to the firm by the end of

the period, the information set, Iit. eωit is firm-specific TFP that is unobserved by

researchers but known to the firm when making production decisions. F (·) is known
up to some parameters. Taking the natural log of (1) yields:

yit = f(lit, kit) + ωit + εit (2)

The main limitation to estimating f(·) is a simultaneity problem: firms choose

their inputs based on the realization of ωit. Therefore, simply regressing a firm’s

output on its inputs would lead to a biased estimate of f(·).
To address this issue, the control function/proxy variable approach makes a set

of assumptions on timing, a proxy variable and how productivity evolves over time.

The existence of spillovers primarily poses a problem for the last set of assumptions.
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Productivity is typically assumed to follow a first-order Markov process:

ωit = h(ωit−1) + ηit (3)

where h(·) is unknown and ηit is mean independent of firm’s information set at

the beginning of the period Iit−1. Suppose instead that ωit is affected by some other

firm j either through its past decisions xjt−1 and/or its current productivity, ωjt:

ωit = h(ωit−1,xjt−1, ωjt) + ζit (4)

where E[ζit | Iit−1] = 0. The effect of xjt−1 represents spillovers from firm j′s ac-

tivities such as research and development (R&D), FDI, exporting, etc. The inclusion

of ωjt indicates that j being more productive could contemporaneously influence i’s

productivity, and both firms’ TFP may be jointly realized in the same period. Since

firm j’s TFP is also determined by its past productivity, ωjt−1, this representation

allows for productivity spillovers to have dynamic implications, while allowing for the

possibility that firm i is also affected by random shocks, ζjt to j’s productivity within

the same period.

When researchers estimate TFP under the assumption in equation (3) whereas the

true process is represented by equation (4), then the effect of firm j on i is attributed

to ηit, which now violates the conditional independence assumption. In the following

subsections, I examine the biases arising from standard control function approaches

in greater detail.

Accounting for xjt−1 is fairly straightforward if we assume that it is known to i at

the beginning of the period; that is, xjt−1 ∈ Iit−1. However, ωjt poses a more serious

challenge because it is jointly realized with ωit and cannot therefore be assumed to

be in Iit−1. In section 4, I outline the assumptions needed to properly account for

the effect of ωjt on ωit when estimating production functions.
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3.1 Control Function Approach

Suppose f(·) takes the form of a simple structural value-added Cobb-Douglas pro-

duction function as in Ackerberg et al. (2015):9

yit = αℓℓit + αkkit + ωit + εit (5)

where yit, kit, and ℓit are the logs of value-added10, capital, and labor respectively.

Obtaining consistent estimates of α and ωit requires three sets of assumptions.

The first relates to the timing of firms’ decisions. Capital is a state variable,

determined in the preceding period as a deterministic function of the firm’s previous

capital stock and its investment decision: kit = κ(kit−1, iit−1). Labor, on the other

hand, may or may not have dynamic implications. It may be fully adjustable and

chosen after productivity is realized, or partly (or wholly) determined in the previous

period. It, however, needs to be chosen prior to the intermediate input decision. Based

on its current capital stock, workforce and productivity, the firm chooses intermediate

inputs according to the following function:

mit = M(kit, ℓit, ωit)

Next, one needs to assume that the demand for materials, g(·) is strictly monotonic

in productivity, and that productivity is the only unobservable component of the input

demand function. This guarantees that TFP can be expressed solely as a function of

observables ωit = M−1(kit, ℓit,mit). Substituting into the production function yields:

yit = αℓℓit + αkkit +M−1(kit, ℓit,mit) + εit (6)

Although αk and αℓ are not identified in this equation, we can obtain consistent

estimates of the firm’s expected value-added:

E[yit|Iit] = φit = αℓℓit + αkkit + ωit (7)

9I choose ACF because it allows for relatively flexible assumptions on the data-generating process
for output, capital, labor and materials. However, this critique applies more broadly to OP, LP,
Wooldridge and first order condition approaches such as Gandhi et al. (2020) that rely on similar
assumptions on the productivity evolution process.

10Output minus intermediate inputs.
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This disentangles productivity from the idiosyncratic shock εit. In order to identify

capital and labor elasticities, the evolution process for productivity must be specified.

A standard assumption is that productivity follows a first-order Markov process given

its information set Iit−1 in the previous period:

ωit = h(ωit−1) + ηit (8)

where E[ωit|Iit−1] = E[ωit|ωit−1] = h(ωit−1). h(·) is known to the firm but unobserved

by the researcher, while ηit is idiosyncratic. Given (7) I can write lagged productivity

as:

ωit−1 = φit−1 − αkkit−1 − αℓℓit−1

=⇒ ωit = h(φit−1 − αkkit−1 − αℓℓit−1) + ηit

Substituting into the production function yields:

yit = αℓℓit + αkkit + h(φit−1 − αkkit−1 − αℓℓit−1) + ηit + εit

Since E[εit|Iit] = 0 and E[ηit|Iit−1] = 0 by assumption, then we can identify αk, αℓ

based on the moment restriction:

E[εit + ηit|Iit−1] = 0

E[yit − αkkit − αℓℓit − h(φit−1 − αkkit−1 − αℓℓit−1)|Iit−1] = 0 (9)

Using this equation, we can derive moment conditions to estimate the elasticities.

Since, there are three unknowns, (αk, αℓ, h(·)), a typical set of moments would be:

E[(ηit + εit)kit, ℓit−1, φit−1] = 0 (10)

3.2 Network Effects

To examine biases due to the existence of spillovers, we need to first understand how

network effects are characterized. Within a given year, relationships between nt firms

result in a network. This can be represented by an nt × nt adjacency matrix At such

that Aij,t = 1 if firm i has a relationship with firm j in that year and zero otherwise.

These relationships could be transactional (i sells inputs to j) or some other form

13



of firm interdependence, such as i and j sharing a board member. The adjacency

matrix need not be symmetric. As is standard in the peer-effects literature, I impose

Aii,t = 0 for all i so that a firm cannot have a spillover effect on itself.

In most examples, I focus on buyer-supplier networks, but this framework could

apply to other types of inter-firm relationships.11 Suppose we are interested in how

upstream firms are affected by the productivity of their downstream network. Let Nit

be the set of i’s customers in period t and nit = |Nit|.12 We would like to estimate

the following network effects equation:

ωit = β1 + ρωit−1 + xit−1βx + λ
1

nit

∑
j∈Nit

ωjt +
1

nit

∑
j∈Nit

xjt−1βx̄ + cψt + ζit (11)

where xit−1 is a 1 × k vector of exogenous firm characteristics that could influence

productivity, such as past R&D or exporting.

In this equation, there are three ways in which firm i’s network could be related to

its productivity. In the terminology of Manski (1993), the first channel is endogenous

network effects : a firm’s productivity is affected by the average productivity of its

neighbors. This is measured by λ.

The second mechanism is contextual effects captured by βx̄. Firms may be in-

fluenced by the characteristics or activities of their neighbors. For example, a firm’s

R&D could generate positive productivity spillovers on its business partners.

A firm’s relationships could also result in correlated effects, productivity shocks

common to all firms in a network cluster. Let ψt index the sub-components of a

network in period t, that is firms who are at least indirectly connected to each other.

Then cψt is a correlated effect for all firms in component ψt.

An underlying assumption here is that the network is exogenous; that is, firms do

not select partners in ways that are systematically correlated with their productivity.

For now, I abstract from network selection and address it in section 5.

For the rest of this discussion, it would be convenient to rewrite these equations

in matrix notation. Define the interaction matrix Gt as the row-normalized form of

11Provided the network satisfies certain conditions for identification. See the rest of this section
for details.

12Note that for some final goods producers and retailers, nit = 0. These firms may not experience
spillovers from others, but could still affect their suppliers.
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At.
13 Equation (11) can be rewritten as:

ωt = β1ι+ ρωt−1 + xt−1βx + λGtωt +Gtxt−1βx̄ + cψt + ζt (12)

The reduced form is as follows:

ωt = (1− λGt)
−1 (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + cψt + ζt) (13)

|λ| < 1 implies that we can represent (I − λGt)
−1 as a geometric series.

ωt =
∞∑
s=0

λsGs
t (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + cψt + ζt) (14)

Bramoullé et al. (2009) proved that equation (12) is identified if the identity matrix I,

G and G2 are linearly independent. The presence of intransitive triads14 guarantees

that linear independence holds. Production networks naturally have this structure

because supply-chains tend to be unidirectional. Therefore, if ωt was observed, one

could estimate equation (12) using 2SLS (Lee, 2003; Bramoullé et al., 2009), QMLE

(Lee and Yu, 2016) or Bayesian methods in (Goldsmith-Pinkham and Imbens, 2013).

Measuring productivity adds a layer of complexity to the problem. A typical

strategy, as in Javorcik (2004) and Serpa and Krishnan (2018), is to first obtain

TFP values by estimating a production function such as using a method described

above, and use these estimates in the network effects equation in (12). However,

these approaches implicitly rule out the presence of spillovers, and the resulting TFP

estimates are incompatible with the a wide set of network models nested in the peer

effects model above.

3.3 Biases due to Network Effects

When productivity is affected by network effects, the independence assumption on the

productivity shock is violated. However, the impact on the estimation of production

function elasticities will differ by the type of effect.

Suppose TFP is estimated under the exogeneity assumption in equation (3) but

13Gij,t = 1/nit if Aij,t = 1 and zero otherwise.
14An intransitive triad in a graph is a set of nodes i, j, k, such that i is connected to j and j to k,

but k is not connected to i.
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the true process is given by equation (12). This implies:15

E[ηt|It−1] = xt−1βx + λGtE[ωt | It−1] +Gtxt−1βx̄ + E[cψt | It−1]

In general, this expression is not equal to zero. xt−1 is a source of omitted variable

bias but De Loecker (2013) and Gandhi et al. (2020) showed that the productivity

process can be modified to account for its impact, provided xt−1 is in the firm’s

information set at the beginning of the period.16 Contextual effects can be accounted

for in the same way under similar assumptions. Assuming that network formation is

exogenous, includingGtxt−1 in equation (3) would eliminate bias from this dimension.

GtE[ωt|It−1] poses a serious challenge because in general, E[ωt|It−1] ̸= 0. Consider

the correlation between neighbors’ current productivity and current capital stock.

Using the reduced form of Gtωt:

E[Gtωt ◦ kt] = E[Gt (1− λGt)
−1 (β1ι+ ρωt−1 + xt−1βx +Gtxt−1βx̄ + ζt) ◦ kt]

where ◦ is the Hadamard product.17 Even though capital stock was determined in

the previous period, it is still correlated with current productivity spillovers because

productivity persists over time, and investment in the previous period was a function

of productivity at the time. That is k(it) = κ(kt−1, it−1(ωt−1)) and therefore, E[Gtωt×
kt] ̸= 0. The same argument can be made for labor which is a function of productivity

in the same period: lt−1(ωt−1) =⇒ E[Gtωt ◦ ℓt−1] ̸= 0.

The direction of bias will depend on the sign and size of λ and the relationship

between capital, labor and productivity. For example, if networks generate positive

productivity externalities and capital stock is increasing in productivity, then αk will

be biased upwards. If λ is small enough, then the size of bias will be minimal. TFP

values will be underestimated but the direction of bias on λ is unclear.

On their own, correlated effects or network fixed effects do not introduce bias in the

estimation of αk and αℓ. Because the common component shocks are idiosyncratic

each period, then kt and ℓt−1, which were determined in the previous period are

15Here, I assume that Gt, {ωjt−1}j∈Nit
and {xjt−1}j∈Nit

are in firm i’s information set at the
beginning of the period. I discuss this assumption explicitly in the next section.

16For example, as De Loecker (2013) noted, including a firm’s current export status would not
be valid because that is dependent on productivity in the same period; however, using its previous
export status would satisfy this condition.

17Element-wise multiplication.
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independent of cψt . However, to the extent that network components and links do

not vary much over time, failing to account for cψtt would bias the αk and αℓ estimates.

To illustrate the bias from ignoring endogenous network effects, consider the fol-

lowing:

ωt = ρ(I − λGt)
−1ωt−1 + (I − λGt)

−1ζit = ρ
∞∑
s=0

λsGs
tωt−1 +

∞∑
s=0

λsGs
tζit (15)

Then the second stage of ACF is equivalent to estimating:18

∆Gyt = αℓ∆
Gℓt + αk∆

Gkt +
∞∑
s=0

λsGs
tζt +∆Gεt (16)

Where ∆Gxt = xt − ρ
∑∞

s=0 λ
sGs

txt−1, ∆err
xt = ρ

∑∞
s=1 λ

sGs
txt−1 and ∆xt = xt −

ρxt−1 = ∆Gxt +∆err
xt . This is equivalent to the dynamic panel approach in Blundell

and Bond (2000). However, growth in output, labor and capital have been purged

of the variation from network effects in the previous period. When we assume no

spillovers, we estimate:

∆yt = αℓ∆ℓt + αk∆kt + ut (17)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing non-

classical measurement error into both output and inputs. Bias from ignoring spillovers

can also be characterized as an omitted variables problem. By estimating equation

(17), where ut = ρ
∑∞

s=1 λ
sGs

tωt−1 +
∑∞

s=0 λ
sGs

tζt + εt. That is, the standard ACF

procedure succeeds in eliminating the endogeneity problem that arises from input

decisions depending on the firm’s own productivity, but is unable to account for the

influence of its network’s past productivity. In either case, an instrumental variable

approach would help to eliminate the problem. The key would be to find variables

that are correlated with changes to labor and capital but uncorrelated with output,

particularly the input choices and output of other firms.

In the OP/LP case where the labor elasticity is consistently estimated in the first

18See section OA1 for derivation.
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stage, the second stage is equivalent to estimating:

∆Gỹt = αk∆
Gkt +

∞∑
s=0

λsGs
tζt +∆Gεt (18)

where ỹt = yt − α̂ℓℓt. Then by estimating ∆ỹt = αk∆kt + ut under the standard

assumption of no-spillovers:

plim = αk

(
1− ρ

∞∑
s=1

λs
cov(∆kt, G

s
tkt−1)

var(∆kt)

)
+ ρ

∞∑
s=1

λs
cov(∆kt, G

s
t ỹt−1)

var(∆kt)
(19)

On one hand, αk is re-scaled by the covariance between the firm’s capital growth

and its network’s previous capital. If this covariance is positive, then it would shrink

α̂k or even reverse its sign. Higher ρ will increase the attenuation factor, as will λ

if it is positive. When λ is negative, it leads to an alternating series that dampens

attenuation. The network structure also plays a role: when long chains exist, Gs
tkt−1 >

0 even for high values of s. By contrast, a network in which firms are paired off, so

that the longest chain has a length of 1. Then Gs
tkt−1 = 0 for all s > 1 and attenuation

would be lower under this scenario.

On the other hand, another source of bias exists that depends on the covariance

between the firm’s capital growth and its network’s previous output purged of the

variation from labor. When this covariance is positive, α̂k overestimates αk, and the

effects of ρ, λ and Gt now work in the opposite direction. Depending on the signs and

magnitudes of these covariances, it is possible to obtain estimates of αk close to the

true value if the two opposing effects cancel one another out.

Even in this simplified setting, the direction and magnitude of bias are not easily

predictable ex-ante. This means that one cannot merely apply a bias correction to

estimates obtained under standard assumptions. It motivates a modification to the

estimation procedure that can flexibly account for a range of productivity processes

and network effects. I propose a modification to the ACF procedure that achieves

this with few additional assumptions.
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4 Accounting for Spillovers

4.1 Endogenous and Contextual Effects

Assuming network exogeneity and no correlated effects, I write a more general form

of the linear-in-means equation (12) above:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + ζt (20)

Note that h(·) is unknown and can be estimated using a polynomial approximation.

This allows for flexible interactions between ωt−1, xt−1, and Gtxt−1. The key re-

quirement is that the endogenous effect enters linearly. This leads to the reduced

form:

ωt = (I − λGt)
−1h(ωt−1,xt−1, Gtxt−1) + (I − λGt)

−1ζt (21)

|λ| < 1 implies that we can approximate (I − λGt)
−1 by a geometric series.

ωt =
∞∑
s=0

λsGs
th(ωt−1,xt−1, Gtxt−1) +

∞∑
s=0

λsGs
tζt (22)

This yields a consistent estimate of the conditional expectation of TFP:

E[ωt|It−1] =
∞∑
s=0

λsGs
th(ωt−1,xt−1, Gtxt−1) (23)

because the resulting error term satisfies the mean independence condition:

E
[
(I − λGt)

−1ζt
∣∣It−1

]
= E

[
∞∑
s=0

λsGs
tζt
∣∣It−1

]
= 0

Note that equation (22) also indicates how λ can be identified. Given the reduced-
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form equation, Gtωt can be written as:

Gtωt =Gth(ωt−1,xt−1, Gtxt−1) +
∞∑
s=1

λsGs+1
t h(ωt−1,xt−1, Gtxt−1)

+
∞∑
s=0

λsGs+1
t ζt

(24)

Provided productivity is sufficiently persistent, we can use the current network’s past

productivity Gtωt−1 as an instrument for the impact of the network’s current pro-

ductivity Gtωt. This is because a firm is only affected by its current neighbors’ past

productivity through the neighbors’ current productivity. Therefore, λ is identified

from the variation in Gtωt.

Equation (24) indicates that there are additional instruments are available to iden-

tify the endogenous network effect. These are more common in the network effects

literature and rely on the existence of intransitive triads in the network (Lee, 2003;

Bramoullé et al., 2009). For example G2
tωt and G

2
txt−1 is one set of possible instru-

ments because G2
t captures the neighbors of a firm’s neighbors, and these indirect

connections affect the firm only through the firm’s direct relationships.

Note however, that the relevance of these additional instruments relies on the

strength of the endogenous effect. Whereas Gtωt−1 is a good instrument as long as

productivity is persistent, G2
tωt−1 requires both persistence and |λ| > 0 while G2

txt−1

requires that both endogenous and contextual network effects be nonzero.

Substituting the reduced form equation into the vectorized production function:

yt =αkkt + αℓℓt +
∞∑
s=0

λsGs
th(φt−1 − αkkt−1 − αℓℓt−1,xt−1, Gtxt−1)

+ εt +
∞∑
s=0

λsGs
tζt

(25)

Accounting for network effects in the estimation procedure comes at the cost of

additional assumptions. First, as seen above, is that the endogenous effect enters the

productivity process linearly. This would not hold if spillovers are non-monotonic.

For example, if firms are likely to free-ride on very productive neighbors and are

also negatively affected by very unproductive networks, but are able to learn from

moderately productive firms, then the linearity assumption would not hold. However,
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there is reason to believe that linearity is, at the very least, a good approximation for

understanding the network effect and it is a common assumption in the peer effects

literature. Furthermore, one need not assume linearity if endogenous spillovers are

not contemporaneous. For example, if we assume firms are affected by the past

productivity of the previous network (Gt−1ωt−1), or the past productivity of their

current network (Gtωt−1), then either of these terms could enter h(·) non-linearly

without posing a problem for identification.

Second, we need to assume that {Gi,jt}j∈Nit is in the firm’s information set Iit−1

at the beginning of the period. This is consistent with a network that is fixed over

time: Gt = G ∀ t = 1...T or any network formation processes that takes place at the

beginning of every period before productivity is realized. For example, in the context

of production networks, if all firms choose their suppliers at the beginning of each

year, this condition would be met. The key here is the timing: firms make production

decisions based on their realized productivities inclusive of spillovers. In addition,

ωjt−1,xjt−1 ∈ Iit−1∀j ∈ Nit. That is, firms can observe the past productivity and

decisions of their neighbors. This likely holds true for buyer-supplier relationships in

which buyers often conduct due diligence on future suppliers, and would need to be

examined in other contexts such as geographic proximity, family networks, affiliate

relationships, interlocking boards, and so on.

Third, I assume that correlations between the TFPs of connected firms are gen-

erated by spillovers rather than common shocks. I relax this assumption in the next

section.

Finally, this procedure requires that Gt is exogenous, that is, network formation

and productivity are not driven by factors that firms observe but we do not. This

assumption can also be relaxed but will require the network formation process to be

specified. I do so in section 5.

4.2 Correlated Effects

Although network fixed effects alone do not bias the estimates of capital and labor

elasticities, if endogenous or contextual spillovers are also present, failing to account

for common shocks will lead to the mismeasurement of TFP. Therefore, given a pro-
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ductivity process with a component-year-specific fixed effect:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + cψt + ζt (26)

cψt can be eliminated by differencing using a matrix Jt such that Jt)cψt = 0. Bramoullé

et al. (2009) suggest two ways to define Jt. The first is within local differencing by

setting Jt = I − Gt. This subtracts the mean of a firm’s neighbors’ variables from

the its own. An alternative would be global differencing, which subtracts not just the

mean of a firm’s neighbors, but all the firms in the component. That is, define Jt

such that Hij,t = 1− 1
nψt

if i, j ∈ ψt and 1 otherwise.

Local differencing would suffice in an undirected network because if two firms are

linked, then the link is reported in Gij,t and Gji,t. However in directed networks,

there may be some firms that are in the same sub-component and are therefore

facing component-specific shocks but
∑

j∈Nit Gij,t = 0, because the firm only has

connections coming from one direction. For example, in a study of how customers

affect the productivity of their suppliers, firm i may be a final goods producer whose

productivity generates upstream spillovers but does not supply to any downstream

firms. Yet it would be exposed to any shocks that affects the entire supply chain.

If edges in Gt are classified as links from suppliers to customers, Gij,t = 0 ∀j and

(I − Gt)cψt = cψt . In this case, local differencing would not eliminate the correlated

effect, but global differencing would.

When Jt is chosen appropriately, then transforming equation (26) yields the re-

duced form:

JtGtωt =
∞∑
s=0

λsJtG
s
th(ωt−1,xt−1, Gtxt−1) +

∞∑
s=0

λsJtG
s
tζt

Note that differencing the productivity process will require that the production

function be transformed as well. That is:

Jtyt =αkJtkt + αℓJtℓt +
∞∑
s=0

λsJtG
s
th(φt−1 − αkkt−1 − αℓℓt−1,xt−1, Gtxt−1)

+
∞∑
s=0

λsJtG
s
tζt + Jtεt (27)
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4.3 Estimation Procedure

I summarize my benchmark estimation procedure and outline modifications to deal

with correlated effects. Estimation is a two-stage process. The first stage is the

same as in Ackerberg et al. (2015). Estimate equation (6): yt = αkkt + αℓℓt +

M−1(kt, ℓt,mt) + εt, using a polynomial approximation.19 This yields estimates φ̂t =

yt − ε̂t.

In the second stage, estimate equation (25) by GMM with kt, ℓt, φ̂t−1, Gtφ̂t−1 as

instruments. Alternatively, to reduce computational complexity, one can concentrate

out the parameters in h(·) and proceed as follows. Start with guesses of the produc-

tion function elasticities: α∗
k, α

∗
ℓ and compute ω∗

t = φ̂t − α∗
kkt − α∗

ℓℓt. Estimate the

productivity process by 2SLS:

ω∗
t = h(ω∗

t−1,xt−1, Gtxt−1) + λGtω
∗
t + ut (28)

with a polynomial approximation of h(.) and [Gtωt−1, G
2
tωt−1, G

2
txt−1] as instruments

for Gtωt. Using predicted values, E[ω∗
t |It−1] from the regression, compute the residual

in the productivity process:

u∗t = ω∗
t − h∗(ω∗

t−1,xt−1, Gtxt−1)− λ∗Gtω
∗
t

Then solve for a new set of (α∗
k, α

∗
ℓ) that satisfy the sample moment conditions:

Ent[u
∗
t ◦ kt, ℓt−1] = 0 (29)

Iterate through all steps of the second stage until the parameters converge to values

[α̂1, α̂k, α̂l]. The corresponding second stage parameters, λ̂ and the parameters in

ĥ(·) are consistent estimates of network effects. Standard errors can be obtained by

residual-based or vertex bootstrapping.20

To account for correlated effects, estimate the first stage as in the benchmark

procedure, and apply the Jt transformation to all variables in the second stage.

19Like ACF, this estimation procedure can be used with other value-added production function
specifications such as the translog.

20See section C in the appendix for details on bootstrapping network data.
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5 Network Endogeneity

So far, I have assumed that the network is exogenous, but it is also possible that

a firm’s productivity may be correlated with how it forms relationships. This issue

is reminiscent of the selection problem in Olley and Pakes (1996) – firms are only

observed if their productivity is above some threshold. In this case, observed interfirm

relationships may depend on TFP. To address this issue, I incorporate the network

selection model in Arduini et al. (2015) and Qu et al. (2017) into the benchmark

estimation procedure above.

5.1 Network Selection Model

Endogenous network formation as modeled by Qu et al. (2017) and Arduini et al.

(2015) highlights a possible link between a firm’s TFP and the nature of its network.

Shocks to productivity are correlated with the chances of meeting potential partners.

For example, firms that are better able to search for buyers or suppliers may also be

more productive. In this case, a positive relationship between a firm’s TFP and its

networks’ TFP or choices would be a result of the improved search rather than any

spillovers.

At the beginning of each period, firms i and j consider the surplus of a link

Vi(Aij,t). Both firms want to form a link if Vi(Aij,t = 1) − Vi(Aij,t = 0) > 0.21 I

parametrize this difference in surplus as:

Vi(Aij,t = 1)− Vi(Aij,t = 0) = Uijt(γ) + ξijt

where ξijt is i.i.d and follows a logistic distribution.

Uijt(γ) = γ1 + zitγi + zjtγj + zijtγij + γhHijt (30)

Note that despite the slight abuse of notation, γi, γj, γij are not random coefficients.

They are parameters whose subscripts denote that they correspond to i, j or the

dyad’s characteristics.

21This model can apply to both directed and undirected networks. For example, in a buyer-
supply network, the the surplus from i supplying j would be considered differently from the reverse
direction.
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zit may include ωit−1, xit−1 and other variables such as industry that influence a

firm’s relationship decision but may have no direct impact on productivity. zijt usu-

ally includes the distance between i and j’s characteristic, |zit − zjt| or some other

dyad-specific measures, such as the physical distance between the firms, industry

input-output shares, etc. A negative coefficient on |zit−zjt| indicates that firm i wants

to match with firms that are similar. Hijt measures past linkages; a large and positive

γh indicates that firm i prefers to stick with its previous partners. Past linkages can

be specified broadly; for example, Hijt = Aij,t−1 would mean that firm i only con-

siders linkages from the previous period, whereas Hijt = 1 (
∑m

s=1Aij,t−s > 0, m ≤ t)

measures whether i and j were connected in any of the last m periods.22

The probability that a link Aij,t forms is given by:

P (Aij,t = 1 | It−1) = P (Uijt(γ) + ξijt > 0) =
eUijt(γ)

1 + eUijt(γ)

The specified model, coupled with a logistic distribution implies that, conditional

on firm and dyad characteristics, historical connectivity, and the unobserved ξt, the

probability that i wants to form a link with j is independent of its decision to connect

with some other firm k. While this may be restrictive, it is analytically and com-

putationally tractable, and still manages to capture important features of real-world

networks.

For example, this model allows for the possibility that a firm can choose multiple

partners; firm i need not prefer j to all other firms, it just needs to prefer matching

with j to not matching. This is useful for characterizing production networks, in which

a non-negligible number of firms trade with more than one partner. As in Goldsmith-

Pinkham and Imbens (2013), this model can also accommodate some interdependence

in the linking decision through the choice of variables such as the number of links in

the previous period, whether the firms had neighbors in common etc.

Network endogeneity arises from the relationship between ξijt and the error term

in the productivity process, ζit. Let ξ
′
it = {ξijt}ntj ̸=i be a row vector of the error terms

from all the dyadic regressions with links originating from i. (ζit, ξ
′
it) ∼ i.i.d.(0,Σζξ)

where Σζξ =

(
σ2
ζ σζξι

′

σζξι Σξ

)
is positive definite, σ2

ζ and σζξ are variance and covariance

22There are alternative models such as Graham (2017) that include firm-year fixed effects in the
dyadic regression model. Estimation of such models will depend on the sparsity of the network.
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scalars, ι is an nt − 1 column vector of ones, and Σξ = σ2
ξInt−1. Stacking all the ξit’s

in a matrix:

Ξt =


ξ
′
1t
...

ξ
′
ntt


then the error term in the productivity process can be written as:

ζit = Ξtδ + νt

where δ = Σ−1
ξ σζξι, νt is independent of ξit and σ

2
ν = σ2

ζ − σζξι
′
Σ−1
ξ σζξι. Therefore,

the productivity process becomes:

ωt = h(ωt−1,xt−1, Gtxt−1) + λGtωt + Ξtδ + νt (31)

Gt is endogenous when σζξ ̸= 0 and the selectivity bias is equal to Ξtδ.

5.2 Accounting for Selection

To the estimate model, assume ζit is normally distributed. Then Arduini et al. (2015)

showed that the selectivity bias can be controlled for using a Heckman-style mills

ratio:

µit =
Nt∑
j ̸=i

gij,t
ϕ(Φ−1(p))

p
+ (1− gij,t)

ϕ(Φ−1(p))

1− p
(32)

where p = P (Aij,t = 1 | It−1), and ϕ and Φ are the probability and cumulative density

functions for a standard normal variable. The i.i.d assumption on ξijt’s dispenses

with the need to estimate all Nt− 1 parameters in δ. Instead, due to the summation

above, one only has to estimate a single parameter δ =
σζξ
σ2
ξ
.

5.3 Estimation Procedure

Incorporating the selection model is similar to the Olley and Pakes (1996) correction

for attrition. The first stage of my benchmark procedure is unchanged with the

estimation of φ̂it and ε̂it using the proxy variable. In the second stage, starting with

the initial guesses of the labor and capital coefficients (α∗
k, α

∗
ℓ), compute ω∗

it−1 =
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φ̂it−1 − α∗
kkit−1 − α∗

ℓℓit−1.

Using ω∗
it−1 and other variables that could determine the observed links between

firms, estimate the selection model in equation (30) to obtain γ∗. Next, compute

the predicted probabilities p∗ = eUijt(γ
∗)

1+eUijt(γ
∗) and the selection correction term µ∗

it =∑Nt
j ̸=i gij,t

ϕ(Φ−1(p∗))
p∗

+ (1 − gij,t)
ϕ(Φ−1(p∗))

1−p∗ . Include this correction term as one of the

explanatory variables in the productivity process equation:

ω∗
t =

∞∑
s=0

λsGs
th(ω

∗
t−1,xt−1, Gtxt−1) + δ

∞∑
s=0

λsGs
tµ

∗
t + ut (33)

The resulting residuals are now purged of the omitted variable bias arising from

network selection and can be used to construct the sample moments in equation (28)

for identification of the elasticities.23

6 Extensions

6.1 Gross Output Production Functions

So far, I have only considered a structural value-added production function, which

often requires the assumption that the production function is Leontief with respect

to intermediate inputs. In this section I consider a framework exploiting first order

conditions on intermediate input choices as in Gandhi, Navarro, and Rivers (2020,

GNR hereafter). Under similar assumptions as in the proxy variable approach above,

the standard GNR procedure can be modified to jointly estimate network effects and

productivity.

Like ACF, the GNR methodology assumes that TFP enters the production func-

tion in a Hicks-neutral fashion. However, intermediate inputs now enter directly into

23In principle, the selection model would be re-estimated for each value of ω∗
it−1 as the values

(α∗
k, α

∗
ℓ ) are updated in each iteration. However, this significantly increases the computational cost

of the procedure. Provided the initial guesses of the elasticities, such as those obtained from an OLS
regression, are reasonably close to their true values, measurement error in the lagged TFP variable
should not have an outsized effect on the estimates of the selection correction term. In my Monte
Carlo simulations, results were quite similar when selection was estimated only once and when it
was re-estimated in each iteration.
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the production function:

Yt = F (Lt, Kt,Mt)e
ωt+εt ⇐⇒ yt = f(ℓt, kt,mt) + ωt + εt (34)

For simplicity, assume that materials are flexible while both labor and capital have

dynamic implications.

The procedure consists of two stages. The first stage exploits first order conditions

from profit maximization to estimate the elasticity of intermediate inputs with respect

to output. Given the production technology above, the firm chooses materials to

maximize profits:

max
Mt

PtE[F (Lt, Kt,Mt)e
ωt+εt ]− PM

t Mt (35)

where Pt and P
M
t are the prices of output and materials respectively. The static first

order condition with respect to materials is:

Pt
∂

∂Mt

F (Lt, Kt,Mt)e
ωtE = PM

t (36)

where E ≡ E[eεt | It] = E[eεt ] which relies on the assumption that the error terms are

unconditionally independent.24

It is also pertinent to note that this first order condition makes an implicit as-

sumption about market structure: that the firm is a price-taker in both input and

output markets. Therefore, this framework cannot directly examine impacts of or

effects on market power. I retain this assumption in my modified procedure.

ln

(
∂

∂mt

f(ℓt, kt,mt)

)
− εt + ln(E) = st (37)

where st ≡ ln(
PMt Mt

PtYt
) is the log of the intermediate input expenditure share of revenue.

E[εt | It] = 0 =⇒ E[st | It] = ln

(
∂

∂mt

f(ℓt, kt,mt)

)
+ ln(E) (38)

Let DE(ℓt, kt,mt) ≡ ∂

∂mt

f(ℓt, kt,mt) × E . Then given the moment of εt in (38)

24See Gandhi et al. (2020) for details on estimation under a relaxed conditional independence
assumption.
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above, lnDE(ℓt, kt,mt) can be estimated by non-linear least squares regression of the

materials expenditure share on the log of a polynomial in labor, capital and materials.

Furthermore:

εt = lnDE(ℓt, kt,mt)− st =⇒ eεt = DE(ℓt, kt,mt)e
−st

E =E[eεt ] = E[DE(ℓt, kt,mt)e
−st ] (39)

Using the estimates of DE from the share regression, we can replace the moment in

(39) with its empirical equivalent and compute the constant E . This enables us obtain
an estimate of the materials elasticity:

D(ℓt, kt,mt) =
∂

∂mt

f(ℓt, kt,mt) =
DE(ℓt, kt,mt)

E
(40)

The second stage of GNR relies further assumptions on the productivity process to

estimate the rest of the production function. By the fundamental theorem of calculus:∫
∂

∂mt

f(ℓt, kt,mt)dmt = f(ℓt, kt,mt) + C(ℓt, kt) (41)

The goal is to estimate C(·) since we can compute
∫ ∂

∂mt

f(ℓt, kt,mt)dmt usingD(ℓt, kt,mt)

from the first stage. By substituting for f(ℓt, kt,mt) using equation (34):∫
∂

∂mt

f(ℓt, kt,mt)dmt = yt − ωt − εt + C(ℓt, kt)

Yt ≡ yt −
∫

∂

∂mt

f(ℓt, kt,mt)dmt − εt = −C(ℓt, kt) + ωt (42)

It is at this point that the assumption on the productivity evolution process comes

into play. GNR maintains the same first-order Markov assumption as ACF:

ωt = h(ωt−1) + ηt, where E[ηt | It−1] = 0 (43)

ωt−1 = Yt−1 + C(ℓt−1, kt−1)

=⇒ Yt = −C(ℓt, kt) + h(Yt−1 + C(ℓt−1, kt−1)) + ηt (44)

We can estimate C(·) and h(·), normalizing the former to contain no constant, based
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on unconditional moments derived from E[ηt | It]:

E[ηtℓ
τℓ
t k

τk
t ] = 0 and E[ηtYτY

t−1] = 0 (45)

where τℓ, τk and τY are determined by the degrees of the polynomial approximations

for C(·) and h(·) respectively.

6.1.1 Accounting for Network Effects

As with the modified ACF approach, I maintain the same assumptions and procedure

in the first stage of GNR. Network effects come into play at the second stage when

the law of motion on productivity is required for identification.

Note however, that by maintaining the same assumptions in the first stage, I do

not account for ways in which the firm’s network could potentially influence its inter-

mediate input choices. For now, I focus specifically on network effects that operate

through productivity spillovers and leave the implications for materials demand for

future work.

I replace the productivity evolution process in (43) with one that allows for a

linearly additive endogenous network effect:25

ωt = h(ωt−1) + λGtωt + ζt where E[ζt | It−1] = 0

=⇒ ωt =
∞∑
s=0

λsGs
th(ωt−1) +

∞∑
s=0

λsGs
tζt

The equation (44) becomes:

Yt = −C(ℓt, kt) +
∞∑
s=0

λsGs
th(Yt−1 + C(ℓt−1, kt−1)) +

∞∑
s=0

λsGs
tζt (46)

This yields an additional set of moments from which the endogenous effect λ can be

identified:

E[ζtG
s
tY

τY
t−1] = 0 where s ≥ 1 (47)

25For clarity of exposition, I leave out contextual and correlated effects, but they can be included
in much the same way as with ACF.
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6.2 Alternative Network Effect Specifications

The modified ACF procedure introduced in section 4 can accommodate specifications

of the productivity process that account for other ways in which spillovers may oc-

cur. In this section, I consider some of these specifications, and how they affect the

estimator and what additional assumptions are needed, if any.

6.2.1 Local-Aggregate Endogenous Effect

The linear-in-means equation considered so far is also known as the local-average

model because it assumes that the average productivity and characteristics of a firm’s

neighbors is the key source of spillovers. Another model is the local-aggregate model

as in Liu and Lee (2010) and Liu et al. (2014), that considers the sum rather than

the average. That is:

ωt = h(ωt−1,xt−1, Atxt−1) + λAtωt + ζt (48)

where At is the adjacency matrix. This model has different implications from the

local-average model. There are also hybrid models that include local-average contex-

tual effects and local-aggregate endogenous effects:

ωt = h(ωt−1,xt−1, Gtxt−1) + λAtωt + ζt (49)

or both local-average and local-aggregate endogenous effects:

ωt = h(ωt−1,xt−1, Gtxt−1) + λAAtωt + λGGtωt + ζt (50)

See Liu and Lee (2010) and Liu et al. (2014) for further discussion of the conditions

under which these network effects are identified. In general as long as the matrix

inversion conditions to obtain a reduced form and the information set conditions

hold, my benchmark procedure only needs to be modified by changing the network

matrix where necessary.

6.2.2 Heterogeneous Network Effects

So far, my model of network effects has assumed homogeneous spillovers. However,

the model can account for a finite set of heterogeneous network effects. If I partition
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the network into a finite set of B groups such as buyers and suppliers, industries, or

based on firm size, then I can estimate:

ωt = h(ωt−1,xt−1, {Gb,txt−1}Bb=1) +
B∑
b=1

λbGb,tωt + ζt (51)

Note that xt−1, {Gb,txt−1}Bb=1ωt = λGtωt where λ is a weighted average of the hetero-

geneous effects. Therefore, my benchmark procedure can still be used to consistently

estimate TFP without any modification. Afterwards, the heterogeneous network ef-

fect parameters can be obtained using the specification above. Dieye and Fortin

(2017) and Patacchini et al. (2017) discuss the identification conditions and estima-

tion procedures for this model in greater detail.

7 Results

In this section, I use my empirical framework to examine the magnitude of endogenous

productivity spillovers through vertical relationships in the US production network.

I explore how these spillovers vary over time, industry and firm size and document

substantial heterogeneity in the sources and recipients of network effects.

I estimate a gross production function with a linear intermediate input share

equation and a second-degree polynomial in capital and labor in the second stage.26

I also estimate a value-added Cobb Douglas production function with materials as

the proxy variable and a second-degree polynomial in the first stage. In both specifi-

cations, I assume a linear productivity process that includes an endogenous network

effect and recover both production function elasticities and productivity spillovers

from my modified approach. Because spillovers imply that TFP is jointly determined

for linked firms across industries, the production function cannot be estimated sep-

arately for each industry. Therefore, I control for industry and year fixed effects in

the productivity equation. In addition, due to the observed variation in the network

structure over time, I estimate both specifications separately for each decade in the

sample.

I compare my estimates with results from standard GNR and ACF approaches

with industry and year fixed effects in the productivity equation for comparability.

26This specification implies a translog production function.
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Because standard approaches do not yield estimates of productivity spillovers, I use

TFP estimates from these procedures in a second stage. To obtain network effect coef-

ficients, I apply the generalized 2SLS (G2SLS) approach in Lee (2003) and Bramoullé

et al. (2009). In the first step, I estimate λ∗ by 2SLS using [Gtωt−1, G
2
tωt−1] as instru-

ments for Gtωt. I compute E∗[Gtωt|It−1] using the reduced form equation in (13).

This is the feasible estimate of the best instrumental variable (IV) for Gtωt. Then I

estimate 2SLS again, this time with E∗[Gtωt|It−1] instrumenting for Gtωt. To elim-

inate component-year fixed effects, I perform global differencing described in section

4.2 to both standard and modified procedures.

To control for network selection, I estimate the model in section 5, estimating

the likelihood of a buyer-seller link as a function of the each firm’s age, size, the

absolute difference between these characteristics, past trading relationship, distance

between their headquarters, and the compatibility of their industries as measured by

inter-industry input and output shares. Given the sparsity of the network, I restrict

a firm’s choice set of buyers or sellers to those it could reasonably expect to trade

with given industry-specific production technologies; that is, rather than include all

dyads, I restrict estimation to dyads with non-zero entries from input-output tables

for their respective industries. The resulting error terms are combined as described

in section 5 and included in the productivity process.

As discussed in section 2, the buyer-supplier network is only partially observed

because firms only need to report their major customers; only about 18% of links

fall below the 10% sales threshold. To address this, I rely on information about link

intensity: I weight each relationship by the value traded between the two firms in

that year. This mitigates some of the bias from missing links, because links that fall

below the 10% threshold are would have weights close to zero. There is also the added

advantage of allowing more important trading partners to have a larger impact on a

firm’s productivity.27

7.1 Production Function Elasticities

Table 2 reports the average estimated elasticities of output with respect to inputs from

gross output and value-added production functions, respectively. GNR and ACF refer

27As a robustness check, I estimate all specifications with an unweighted network in section B.1
of the appendix. The results are similar in magnitude, indicating that major trading partners are
the more salient sources of spillovers.
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to the standard procedures, GNR-N and ACF-N denote my modified approach that

accounts only for endogenous productivity spillovers, GNR-ND and ACF-ND indicate

specifications with both endogenous network effects and component-year fixed effects,

and GNR-NDS and ACF-NDS include the correction for network selection in addition

to all previous network effects. Because I assume that the network does not directly

affect intermediate input demand in the gross output specification, the elasticity of

output with respect to materials does not vary across specifications.

The input elasticities do not vary much with the inclusion of network effects,

although the capital coefficient is slightly higher in with estimates obtained network-

augmented GNR relative to standard GNR, and lower with the network-augmented

ACF relative to standard ACF.28

Table 2: Gross Output Production Function Elasticities

Function Type Estimator Capital Labor Materials

Gross Output
GNR 0.210 0.321 0.500
GNR-N 0.219 0.318 0.500
GNR-ND 0.221 0.317 0.500
GNR-NDS 0.218 0.318 0.500

Value Added
ACF 0.384 0.644 -
ACF-N 0.383 0.646 -
ACF-ND 0.375 0.657 -
ACF-NDS 0.375 0.657 -

Average elasticities of output with respect to inputs from a gross output and value-added production function es-
timated on a subsample US firms in Compustat. All specifications include industry and year fixed effects in the
productivity process.

7.2 Endogenous Productivity Spillovers

I now turn to estimates of productivity spillovers. First, I define the network as

undirected: a firm i is affected by the average productivity of all identified buyers

and sellers. Table 3 shows the endogenous network effects.

In the gross output specification, TFP measures from the standard GNR approach

suggest that a firm’s productivity rises by 0.0084 percent in the short run when its

28The latter pattern is consistent with the Monte Carlo simulations in table 2, as is the similarity
across estimates given the sparsity of the observed network.
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Table 3: Endogenous Productivity Spillovers

Dependent Variable: lnTFPt
Gross Output Value-added

Neighbors’ Network Neighbors’ Network
Estimator lnTFPt−1 lnTFPt Selection Estimator lnTFPt−1 lnTFPt Selection

GNR
0.9035 0.0084 -

ACF
0.8687 0.007 -

(0.0067) (0.0023) - (0.0095) (0.0026) -

GNR-N
0.9025 0.009 -

ACF-N
0.8688 0.0064 -

(0.0067) (0.0023) - (0.0095) (0.0026) -

GNR-ND
0.8996 0.0076 -

ACF-ND
0.8663 0.001 -

(0.0073) (0.0024) - (0.0101) (0.0026) -

GNR-NDS
0.8997 0.0074 -0.0009

ACF-NDS
0.8672 0.0011 -0.00002

(0.0073) (0.0024) (0.0005) (0.0101) (0.0026) 0.00045

Standard errors are in parentheses. All specifications include industry and year fixed effects.

Table 4: Network Formation Model Estimates

Dependent variable: Firm i sells to firm j
Coefficient S.E. Coefficient S.E.

Ageit -0.0177 0.001 Excluded: Distance in (100, 500) mi
Sizeit -0.4094 0.019 Distance < 25 mi 0.6247 0.049
Agejt 0.0052 0.001 Distance in (25, 100) mi 0.2405 0.030
Sizejt 0.7468 0.022 Distance in (500, 1000) mi -0.1679 0.025
|Ageit − Agejt| 0.0023 0.001 Distance in (1000, 1500) mi -0.3124 0.031
|Sizeit − Sizejt| -0.3231 0.020 Distance in (1500, 2000) mi -0.4492 0.037
Firm i sold to j in t− 1 9.0060 0.084 Distance in (2000, 2500) mi -0.4562 0.032
Share of industryi’s output sold to industryj 1.1988 0.097 Distance > 2500 mi -0.6308 0.030
Share of industryj’s inputs purchased from industryi 2.5486 0.086 Distance measure does not exist -0.7337 0.069

S.E. is for standard errors.
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average buyer or seller gets 1 percent more productive. The persistence of TFP over

time implies a magnified long-run effect of having more trading partners in one period:

an estimated coefficient of 0.9 on ln TFPt−1 implies a 1 percent more efficient average

trading partner in a single period results in a long-run efficiency gain of 0.084 percent.

Accounting for endogenous productivity spillovers in TFP estimation raises the

long-run effect to 0.09 percent, but differencing out common shocks to productivity

lowers the estimate to 0.076 percent. In the value-added specification, the impact of

correlated effects is striking; the estimated long-run impact of a 1 percent rise in the

average trading partner’s TFP goes from 0.07 percent with standard ACF to 0.01

when I account for both endogenous and correlated effects in the production function

estimation.

Across gross output and value-added specifications, controlling for network selec-

tion does not significantly change the estimates compared to just network differencing,

and there does appear to be a negative but negligible relationship between productiv-

ity shocks and relationship formation. Estimates from the network formation model

in table 4 suggest positive assortativity in size and negative assortavity in age between

sellers and buyers. Consistent with gravity models of trade, distance is positively cor-

related with the likelihood of a trading relationship, and given that the reported links

are to major customers, a past trading relationship appears to be strongly predic-

tive of a current linkage, indicating stability of links over time. The persistence of

observed links and the limited impact of the network formation model on the endoge-

nous spillover estimates suggests that conditional on past productivity, firms do not

appear to positively sort in response to unanticipated productivity shocks. Therefore,

for the kinds of relationships that we observe, these contemporaneous network effects

are not attributable to sorting.

Across all specifications, estimates from the standard approach and my modified

procedure are often statistically indistinguishable, which is to be expected given the

sparsity of the network as discussed in section OA1.

7.2.1 Relationship Direction

Using the approach outlined in section 6.2.2, I allow spillovers to vary by the di-

rection of the relationship i.e. from suppliers to buyers and vice versa. Table 5

shows that productive suppliers have more than four times the impact on their cus-

tomers as productive buyers have on their suppliers in the gross output specification:
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having a 1 percent more productive supplier is associated with 0.083 percent higher

productivity in the long-run, whereas an equivalent rise in the average customer’s

productivity would generate 0.018 percent long-run increase. The same pattern holds

in the value-added specification but the difference is less pronounced and not statisti-

cally significant: a 0.016 percent long-run supplier effect compared to a 0.011 percent

customer effect.

Table 5: Productivity Spillovers by Relationship Direction

Dependent Variable: lnTFPt
Gross Output Value-added

Customers’ Suppliers’ Customers’ Suppliers’
Estimator lnTFPt lnTFPt Estimator lnTFPt lnTFPt

GNR
0.0026 0.0053

ACF
0.0013 0.0016

(0.0008) (0.0009) (0.0003) (0.0004)

GNR-N
0.0032 0.0102

ACF-N
0.0012 0.0018

(0.001) (0.0013) (0.0003) (0.0004)

GNR-ND
0.002 0.0095

ACF-ND
0.0011 0.0016

(0.0009) (0.0012) (0.0003) (0.0003)

GNR-NDS
0.0018 0.0083

ACF-NDS
0.0011 0.0016

(0.0008) (0.001) (0.0003) (0.0003)

Standard errors are in parentheses. All specifications include industry and year fixed effects.

Estimates from value-added specifications do not show a significant difference

between spillovers from buyers to sellers or vice versa: a 10 percent more efficient

supplier is associated with a 0.016 percent rise in productivity while the effect of buy-

ers is 0.011 percent. These effects are statistically indistinguishable from each other.

For the rest of this discussion, I focus on estimates from gross output production

functions, but additional results from value-added specifications are in section B.2 in

the appendix.

Larger supplier spillovers could be to the fact that supplier efficiencies can be

passed downstream more passively than customer efficiencies flowing upstream. Im-

proved logistics and customer relationship management (CRM) practices on the part

of the supplier could generate operational gains for buyers by enabling them to better

streamline production or eliminate bottlenecks. To the extent that suppliers cannot

fully price these changes into their long-standing contracts, these would show up as
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Figure 8: Spillovers by Firm Size and Relationship Direction

Arrows indicate direction of spillovers. See table 6 for standard errors.

productivity spillovers even in the absence of any direct collaboration. By contrast,

spillovers from customers to suppliers often necessitate some form of information or

knowledge sharing because the customer’s production is not a direct input into the

supplier’s production. Therefore, customers may be affected by both large and small

suppliers but suppliers are likely to be mainly affected by large customers who are

more likely to exert a meaningful influence on the supplier’s operations.

An alternative explanation could be that these differences arise from the esti-

mation of revenue-based TFP (TFPR) rather than quantity-based TFP (TFPQ). If

large customers exert downward pressure on their suppliers’ prices, this would have

a dampening effect on the suppliers’ TFPR even if TFPQ is rising.

Table 6: Productivity Spillovers by Varying Firm Size Cutoffs (Gross Output)

Dependent Variable: lnTFPt
Size Cutoff

500 1000 5000 Median
Partner Size Relationship Large Firm Small Firm Large Firm Small Firm Large Firm Small Firm Large Firm Small Firm

Large
Customers

0.002 0.0021 0.0017 0.0036 0.0015 0.0019 0.0011 0.0015
(0.0008) (0.001) (0.0008) (0.0011) (0.0008) (0.001) (0.0008) (0.001)

Suppliers
0.0083 0.0143 0.008 0.0094 0.006 0.0086 0.0088 0.0093
(0.001) (0.0077) (0.001) (0.0036) (0.0008) (0.0027) (0.001) (0.0016)

Small
Customers

-0.0091 -0.0045 -0.001 -0.0051 -0.0038 0.0007 0.0019 0.0026
(0.0076) (0.0052) (0.0061) (0.0036) (0.0039) (0.0012) (0.0015) (0.0012)

Suppliers
0.0081 0.0075 0.0086 0.0074 0.008 0.0091 0.0074 0.0088
(0.0009) (0.0053) (0.001) (0.0033) (0.0012) (0.0013) (0.0011) (0.0013)

Large firms are defined by having at least as many employees as the cutoffs indicated above. The median cutoff
is determined by industry and year. Estimates are from a gross output production function with endogenous and
correlated effects. Standard errors are in parentheses. All specifications include industry and year fixed effects.

To distinguish between these two explanations, I estimate productivity spillovers
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that vary by firm size. I classify firms according to the BEA’s definition: a firm is

large if it has 500 or more employees. If the difference between customer and supplier

spillovers is driven by the first explanation, then we should expect small customers

to have a negligible effect on their suppliers compared to large customers. On the

other hand, price-driven explanation for the spillover differential would imply that

spillovers from customers should be greater for large firms compared to small firms,

assuming size is a good proxy for relative bargaining power. The results reported

in table 6 and depicted in figure 8 are more consistent with the former explanation

than with the latter. Large customers have a similar impact on large and small firms,

small customers have a negative and not statistically significant effect on firms of

both sizes. Supplier-to-buyer spillovers, however, are driven by both small and large

suppliers with equally-sized effects on large firms.

Given that the average firm in my sample is larger than the average firm in the

US, at least 60 percent or more the sample can be classified as large based on this

definition. In table 6, I check how sensitive these results are to different classifica-

tions of firm size. I consider three alternative definitions based on the number of

employees: greater than or equal to 1000, 5000 or an industry-year specific median.

The results are similar across definitions except that, as expected, the impact of large

firms diminishes while that of small firms rises as the threshold is raised.

7.2.2 Inter- and Intra-sectoral spillovers

In this section, I investigate the transmission of productivity gains within and across

sectors. I estimate a gross output production function with endogenous and correlated

effects, allowing spillovers to vary by the sector of the firm and its trading partners.

For ease of illustration, I only depict spillovers that are significant at the 5 percent

level, separating forward spillovers in figure 9 and backward spillovers in figure 10.

To do so, I classify inter-sectoral spillovers as based on the share of observed links

that are from sellers to buyers, or from buyers to sellers respectively. If 50 percent or

more of links between sector u and sector v are from suppliers in u to customers in v,

then the spillovers from u to v are classified as forward or upstream to downstream,

while the impact of sector v on firms in u is considered backward or downstream to

upstream. Table 7 reports the full set of estimates.

These results highlight the important role of electronics manufacturers, informa-

tion technology (IT) firms, and retailers and wholesalers in US productivity growth.
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Figure 9: Upstream to Downstream
Productivity Spillovers by Sector
Arrows indicate the direction of productivity
spillovers (λ). See table 7 for the full set of coeffi-
cients.

Figure 10: Downstream to Upstream
Productivity Spillovers by Sector
Arrows indicate the direction of productivity
spillovers (λ). See table 7 for the full set of coeffi-
cients.

Table 7: Productivity Spillovers by Sector (Gross Output)

Dependent Variable: lnTFPt
Firm’s Sector u

Non-
Partners’ Sector v Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining
-0.0084 -0.0096 -0.0064 0.0017 0.0075 -0.0161 0.0172 0.0094 0.0102 0.0357 0.0042 0.0028
(0.0064) (0.0038) (0.0331) (0.005) (0.0027) (0.0326) (0.0104) (0.008) (0.0092) (0.0111) (0.0085) (0.008)

Utilities
-0.0032 -0.0007 0.0061 0.003 0.01 0.0134 0.0041 -0.0028 0.0018 -0.0024 -0.0038 0.0105
(0.0059) (0.0028) (0.0104) (0.0027) (0.0021) (0.0082) (0.0083) (0.0084) (0.0065) (0.0125) (0.0178) (0.006)

Construction
-0.0192 0.0014 0.0147 0.0055 -0.0058 -0.0079 0.0113 -0.0075 0.017 0.0043 -0.0005 0.0282
(0.0312) (0.0041) (0.0115) (0.0059) (0.0036) (0.0133) (0.0076) (0.009) (0.0228) (0.0035) (0.0061) (0.0218)

Durables Mfg
0.0077 0.0002 0.0265 0.0025 0.0012 -0.0036 0.0079 -0.0016 0.0029 0.0039 0.0052 0.0032
(0.0065) (0.003) (0.0231) (0.0022) (0.0016) (0.0024) (0.0027) (0.0016) (0.0035) (0.0034) (0.0063) (0.0034)

Non-Durables
Mfg

-0.0061 -0.0014 -0.0028 0.0001 -0.001 -0.0067 0.0034 -0.0062 -0.0065 -0.0026 -0.0175 -0.0102
(0.0052) (0.0028) (0.0132) (0.0018) (0.0013) (0.0048) (0.0027) (0.0016) (0.0038) (0.0044) (0.0085) (0.0038)

Electronics Mfg
-0.0433 -0.0157 -0.0275 -0.0003 -0.0043 0.0244 0.013 0.0021 0.0079 0.0007 0.0207 0.0001
(0.0501) (0.0055) (0.0355) (0.0046) (0.0038) (0.0029) (0.0031) (0.0032) (0.0058) (0.0031) (0.0091) (0.0043)

Wholesale
-0.0052 0.0126 0.0121 0.0022 0.0032 0.0165 0.01 0.0017 0.0033 0.0022 -0.0132 0.0027
(0.0118) (0.0075) (0.0164) (0.0021) (0.0012) (0.0021) (0.0038) (0.0014) (0.0104) (0.0024) (0.0118) (0.004)

Retail
0.0113 -0.0037 -0.0075 0.0074 0.003 0.0194 0.0104 0.0012 -0.0013 0.009 0.018 0.0017
(0.0118) (0.0104) (0.016) (0.0028) (0.0013) (0.0036) (0.0019) (0.0026) (0.004) (0.0041) (0.0046) (0.0044)

Transport and
Warehousing

0.0079 0.0116 0.0575 0.0037 0.0033 0.0067 0.0078 0.0022 -0.0031 0.0007 -0.0088 0.0
(0.0094) (0.0034) (0.0184) (0.0041) (0.002) (0.0059) (0.0109) (0.0039) (0.0042) (0.0081) (0.0073) (0.0103)

Information
0.0244 -0.0023 0.0085 -0.0035 -0.001 0.0151 0.0064 -0.001 -0.018 0.0041 0.0066 -0.0074
(0.0118) (0.0069) (0.017) (0.0039) (0.0028) (0.0025) (0.0049) (0.0026) (0.0048) (0.0028) (0.0047) (0.004)

Finance, Insur
& Real Estate

0.0004 0.005 -0.0134 0.0 -0.0044 0.0134 -0.0026 0.0017 0.0045 0.0042 -0.0021 0.0048
(0.0112) (0.0143) (0.0128) (0.0044) (0.0025) (0.0034) (0.0149) (0.002) (0.0043) (0.0031) (0.0043) (0.0036)

Services
0.0035 -0.0088 0.0083 0.0088 0.0042 0.0022 0.0084 0.0042 0.0025 0.0052 0.009 0.0025
(0.0117) (0.0036) (0.0253) (0.0023) (0.0023) (0.0028) (0.0072) (0.0026) (0.005) (0.0031) (0.0048) (0.0037)

Sectors are determined according to the BEA industry classification.Estimates are from a gross-output production
function with endogenous and correlated effects. Standard errors are in parentheses. All specifications include

industry and year fixed effects.
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Substantial forward spillovers occur within the electronics manufacturing sector. Fur-

thermore, the synergies between electronics manufacturing and the finance, insurance

and real estate sector is primarily driven by technology patent holders (SIC 6794 and

NAICS 533110) such as InterDigital Inc. which provides mobile technology research

services to mobile phone manufacturers such as Apple. Manufacturers also tend to

amplify the impact of productivity growth in other sectors because they enjoy effi-

ciency boosts from both directions: electronics manufacturers from mainly customers

and manufacturers of non-durables from their suppliers. Although retailers and trans-

port and warehousing firms generate substantial positive backward spillovers, they do

not benefit from efficiency boosts from other sectors, and in fact, experience nega-

tive network effects which suggests free-riding on efficiency improvements by trading

partners.

The variation in backward and forward spillovers within and across sectors sug-

gests that aggregate productivity growth can shaped by the sectoral composition

of the country’s production network. To examine this, I compute a back-of-the-

envelope estimate of the long-run impact of a 1 percent rise in the productivity the

most 10 central firms in each decade as shown in figure 5. Let Jt be the set of

10 most central firms at time t. Then for each firm j ∈ Jt, I sum j’s contribu-

tion to the network average for each of connected firm i, weighting by firm i’s share

of revenues in that period, and multiply that by the spillover estimate. That is:

Contributionjt = λ̂
∑

it
Revenueit

Total Revenuet
Gijt.

Then I compute
∑

j∈Jt Contributionjt, divide by (1− ρ̂) to get the long-run effect,

and average by decade under two scenarios: λ̂ = 0.0074, constant for all firms, and λ̂

varies by sector of the firms and their trading partners as in table 7. By comparing

both estimates within each decade, we can understand how differences in sectoral

composition change spillovers in the aggregate.

Figure 11 shows that the sectoral composition does make a significant difference in

the magnitude of aggregate spillovers. In the earlier decades in which manufacturing

firms were more central, sector-specific spillovers often twice as large as under the

homogeneous spillover scenario. For example, in the 1987-1996 period, a 1 percent

rise in the productivity of the 10 most central firms would contribute an estimated

0.006 percent to long term aggregate TFP growth assuming equal spillovers across

firms, compared to 0.012 percent after taking into account sector-specific spillovers.

By contrast, in the more recent decade with retailers and wholesalers most central in
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Figure 11: Estimated Impact of 10 Most Central Firms on Aggregate TFP

Estimated long-run impact of a 1% increase in the TFP of the 10 most central firms in each year on sales-weighted
aggregate productivity through spillovers alone.

Table 8: Spillovers and Intersectoral Characteristics

Dependent Variable: Estimated Spillovers from Partners’ Sector v to Firm’s Sector u (λ̂)

Characteristic Coefficient
Log(1 + Backward patent citations from u to v) 0.0019

(0.0008)
Log(Employee flows from v to u) -0.0033

(0.0014)

Includes Partners’ Sector (v) and Firm’s Sector (u) fixed effects. Patent citations and employee flows are quarterly
averages from 2011 to 2016. Standard errors in parentheses.

the network, overall spillovers are lower after taking into account sectoral variation.

This lends some credence to idea that policymakers may prefer an economy in which

manufacturing is central relative to other sectors.

Next, I examine two possible sources of the sectoral variation on productivity

spillovers. The first is knowledge transmission as reflected in patent citations. As

Fadeev (2023) points out, patent citations tend to be concentrated among business

partners, suggesting the sharing of trade secrets across buyer-supplier links. Using

the USPTO-Compustat crosswalk from the Wharton Research Data Service, I match

US patents issued between 2011 to 2016 to firms in my sample, and obtain quarterly

averages of sector-by-sector backward patent citations (including citations of patents

issued prior to 2011). As shown in figure 12, the number of inter- and intra-sectoral

buyer-seller links is positively correlated with backward citations.

The second correlate I consider is employee flows. Prior work has provided evi-
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Figure 12: Trade Linkages and Patent
Citations
Sector-level correlations between patent citations and
buyer-supplier links controlling for citing and cited sec-
tor fixed effects. Patent citations are quarterly averages
from 2011 to 2016.

Figure 13: Trade Linkages and Em-
ployee Flows
Sector-level correlations between employee flows and
buyer-supplier links controlling for employee origin
and destination sector fixed effects. Employee flows
are quarterly averages from 2011 to 2016.

dence that workers tend to move across firms that have trading relationships (Cardoza

et al., 2023) and that knowledge transmitted through employee flows is a mechanism

for inter-firm productivity spillovers (Stoyanov and Zubanov, 2012). I obtain na-

tional quarterly averages of sector-by-sector job-to-job flows from the Longitudinal

Employer-Household Dynamics published by the US Census Bureau from 2011-2016.

In figure 13, I show that, conditional on employee origin and destination sector fixed

effects, there is a positive relationship between employee flows and trade relationships.

I explore how these two measures relate to the estimated intra- and inter-sectoral

spillovers. As shown in table 8, estimated spillovers from sector v to u were higher

if firms in sector u tend to cite patents from v, but lower if workers from v to tend

to move u. Although these associations are by no means causal, the difference in

directions is striking, suggesting that the estimated spillovers may reflect the kinds of

efficiency gains through innovation than through worker knowledge. Further investi-

gation of these differences is left for future work.

8 Concluding Remarks

The findings of this paper demonstrate the importance of considering firm interde-

pendence through networks on the measurement of productivity and spillovers across

firms. By incorporating network effects directly into the production function esti-

mator, my modified approach can allow for the recovery of consistent estimates of

productivity and contemporaneous spillovers in a unified approach. Although I have
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focused primarily on vertical relationships, the framework can be extended to other

settings in which one may be interested in productivity spillovers over other types of

linkages such as interlocking boards, ownership networks, geographic proximity etc.

The key consideration is to understand in which settings the identifying assumptions

such as network intransitivity hold and to adjust the framework accordingly.

Empirically, my estimates provide suggestive evidence of the importance of pro-

ductivity spillovers across US publicly-listed companies through domestic firm-to-

firm trading relationships. One limitation of this study is the relatively large size

of the firms in this sample compared to the median US firm. Given that the back-

ward spillovers are mainly driven by large customers, and both small suppliers and

customers benefit from these spillovers even within this sample, we might expect

larger estimates on a more representative sample that includes much smaller, younger,

privately-held firms.

Finally, the difference in sector-specific spillovers raises questions about the role of

upstreamness and downstreamness in diffusing productivity gains through the econ-

omy. Manufacturing firms that tend to both generate and benefit from spillovers from

firms above and below them in the supply chain appear to amplify productivity gains

more than downstream retailers which are an important source but not beneficiary.

Unpacking the precise mechanism of these transmissions, particularly as it relates to

innovation or tacit knowledge embodied in human capital is an important area of

exploration for both decision-makers within firms and policy makers.
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A Variable Construction

• Sales: Net sales deflated by an industry deflator for GDP.

• Labor: Number of employees

• Capital: Total property, plant and equipment (gross) before depreciation. Fol-

lowing the method in İmrohoroğlu and Tüzel (2014), I deflate using the yearly

implicit price deflator for fixed investment at the calculated age of capital.

Capital age is computed as the ratio of accumulated depreciation to current

depreciation, smoothed by taking a 3-year moving average. The year at which

the deflator is applied is current year − average capital age. All years before

1929 are bottom-coded because that is the earliest year in the deflator data.

• Materials: Estimated as Cost of goods sold plus Selling, General and Adminis-

trative Expenses minus labor costs. Salaries and wage costs are missing for most

firms, so I estimate labor costs by multiplying number of employees by 2-digit

industry wages per full-time equivalent employee. These estimates strongly cor-

relate with wage costs that were reported in the data. Estimated materials are

deflated by the 2-digit industry price indices for intermediate inputs.

• Value-added: Sales minus materials, deflated by industry price indices for value-

added.

• Industry: Industry classifications are based on those used in input-output ta-

bles from the Bureau of Economic Analysis (BEA). There are 65 industries from

before 1997 and 71 industries from 1997 onwards. These roughly correspond

to 3-digit NAICS and 2-digit SIC codes. Compustat ’s annual financials only

reports the latest industry classification, therefore, I obtain historical NAICS

codes from the primary business segment. I also replace SIC codes for compa-

nies that are incorrectly coded as ”99” (unclassifiable) from annual reports in

the EDGAR database and business segment data. These are then converted to

BEA industry codes using the concordances provided by the bureau. All de-

flators, price indices and input-output tables are based on these BEA industry

codes. However, in regressions I combine industries with too few observations.

These include: transit and ground transportation with general transportation

and warehousing, and other transportation and support activities; Funds, trusts
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and other financial vehicles combined with securities, commodity contracts and

investments; Legal services with miscellaneous professional services; Ambula-

tory health, hospitals, nursing and residential care with social assistance. This

results in 41 industry groups.

B Additional Results and Robustness Checks

B.1 Unweighted Estimates

Table 9: Endogenous Productivity Spillovers (Unweighted)

Dependent Variable: lnTFPt
Gross Output Value-added

Neighbors’ Network Neighbors’ Network
Estimator lnTFPt−1 lnTFPt Selection Estimator lnTFPt−1 lnTFPt Selection

GNR
0.9038 0.0076 -

ACF
0.8688 0.0061 -

(0.0066) (0.0023) - (0.0095) (0.0026) -

GNR-N
0.9027 0.0086 -

ACF-N
0.8689 0.0056 -

(0.0067) (0.0024) - (0.0094) (0.0026) -

GNR-ND
0.8998 0.0069 -

ACF-ND
0.8662 0.0002 -

(0.0073) (0.0025) - (0.0101) (0.0028) -

GNR-NDS
0.9003 0.0070 -0.0009

ACF-NDS
0.8671 0.0002 -0.00002

(0.0073) (0.0025) (0.0005) (0.0101) (0.0028) (0.00045)

Standard errors are in parentheses. All specifications include industry and year fixed effects.

Table 10: Productivity Spillovers by Relationship Direction (Unweighted)

Dependent Variable: lnTFPt
Gross Output Value-added

Customers’ Suppliers’ Customers’ Suppliers’
Estimator lnTFPt lnTFPt Estimator lnTFPt lnTFPt

GNR
0.0025 0.0053

ACF
0.0013 0.0016

(0.0008) (0.0009) (0.0003) (0.0004)

GNR-N
0.0024 0.0079

ACF-N
0.0012 0.0018

(0.0008) (0.0011) (0.0003) (0.0004)

GNR-ND
0.0015 0.008

ACF-ND
0.0011 0.0016

(0.0008) (0.001) (0.0003) (0.0003)

GNR-NDS
0.0016 0.008

ACF-NDS
0.0011 0.0015

(0.0008) (0.001) (0.0003) (0.0003)

Standard errors are in parentheses. All specifications include industry and year fixed effects.
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B.2 Value-Added Estimates

Table 11: Productivity Spillovers by Varying Firm Size Cutoffs (Value-Added)

Dependent Variable: lnTFPt
Size Cutoff

500 1000 5000 Median
Partner Size Relationship Large Firm Small Firm Large Firm Small Firm Large Firm Small Firm Large Firm Small Firm

Large
Customers

0.0008 0.002 0.0008 0.003 -0.0 0.0014 0.0002 0.0022
(0.0003) (0.0004) (0.0003) (0.0004) (0.0003) (0.0004) (0.0003) (0.0004)

Suppliers
0.0004 0.0028 0.0002 0.0049 -0.0006 0.0037 -0.0 0.0048
(0.0002) (0.0027) (0.0002) (0.0015) (0.0002) (0.001) (0.0002) (0.0006)

Small
Customers

-0.0054 -0.0003 -0.002 -0.0014 -0.0009 0.0004 -0.0003 0.0019
(0.0023) (0.0028) (0.0015) (0.0018) (0.0009) (0.0006) (0.0005) (0.0007)

Suppliers
0.0007 0.0039 0.0006 0.0038 -0.0001 0.0039 0.0 0.0032
(0.0002) (0.0025) (0.0002) (0.0015) (0.0003) (0.0006) (0.0003) (0.0006)

Large firms are defined by having at least as many employees as the cutoffs indicated above. The median cutoff
is determined by industry and year. Estimates are from a value-added production function with endogenous and
correlated effects. Standard errors are in parentheses. All specifications include industry and year fixed effects.

Table 12: Productivity Spillovers by Sector (Value-Added)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining
0.0037 -0.0004 0.009 0.0027 0.0014 -0.0057 -0.0011 -0.0026 0.0121 0.0135 -0.001 -0.0035
(0.0018) (0.0011) (0.0092) (0.0013) (0.0009) (0.0081) (0.0034) (0.0025) (0.0055) (0.0068) (0.0036) (0.0025)

Utilities
0.0029 0.0025 0.0034 -0.0001 0.0022 0.0025 0.0052 -0.0023 0.0024 -0.0013 -0.003 0.0033
(0.0018) (0.001) (0.004) (0.001) (0.0011) (0.0021) (0.0033) (0.0028) (0.0021) (0.0054) (0.0107) (0.0034)

Construction
0.0151 0.0014 0.009 0.0013 -0.0014 -0.0018 -0.0107 -0.0057 0.0047 0.0004 0.001 0.0096
(0.0172) (0.0013) (0.0049) (0.0023) (0.0009) (0.0032) (0.0068) (0.0037) (0.0091) (0.001) (0.0033) (0.0107)

Durables Mfg
0.0008 -0.0007 0.0171 -0.0002 -0.0019 -0.0017 0.0013 -0.0014 -0.0002 -0.0011 0.0027 0.003
(0.0018) (0.0008) (0.0084) (0.0006) (0.0006) (0.0006) (0.0012) (0.0007) (0.0013) (0.0013) (0.0035) (0.0014)

Non-Durables
Mfg

0.0023 0.0007 0.0048 -0.0011 -0.0011 -0.0006 0.003 -0.0043 0.0035 -0.0012 -0.0073 -0.0059
(0.0019) (0.0011) (0.0061) (0.0006) (0.0005) (0.0011) (0.0012) (0.0007) (0.0019) (0.0016) (0.0035) (0.0017)

Electronics Mfg
-0.0087 -0.0011 -0.008 0.0004 -0.0014 0.0012 0.0042 -0.0013 0.0008 -0.0006 0.0049 -0.0
(0.0081) (0.0014) (0.0084) (0.0006) (0.0012) (0.0006) (0.0011) (0.0013) (0.0013) (0.0008) (0.004) (0.0014)

Wholesale
0.0007 -0.0005 0.0214 0.0007 0.001 0.0024 0.0061 -0.002 -0.0022 -0.0004 -0.0068 -0.0012
(0.0042) (0.0013) (0.0216) (0.0007) (0.0006) (0.0008) (0.0025) (0.0009) (0.0026) (0.0012) (0.0058) (0.0015)

Retail
-0.0052 -0.0082 0.0023 0.0018 0.0006 0.005 0.0033 0.0001 -0.0012 0.0044 0.0086 0.0002
(0.0039) (0.0032) (0.0169) (0.0007) (0.0006) (0.0018) (0.0016) (0.0012) (0.0013) (0.0022) (0.0032) (0.0022)

Transport and
Warehousing

0.0031 -0.0003 0.013 0.0006 0.0005 -0.0016 0.0162 0.0025 0.0004 -0.0 0.0161 -0.0034
(0.0029) (0.0008) (0.0084) (0.0013) (0.0006) (0.0029) (0.0059) (0.0019) (0.0016) (0.0019) (0.0044) (0.0024)

Information
0.0071 0.0002 0.0036 -0.0026 -0.0017 0.0011 0.0055 -0.0003 -0.0042 0.002 0.0029 -0.0022
(0.0052) (0.0013) (0.0064) (0.0012) (0.0011) (0.0007) (0.0021) (0.0014) (0.0014) (0.0009) (0.0019) (0.0015)

Finance, Insur
& Real Estate

0.002 -0.0049 -0.0054 -0.0007 -0.0008 0.0031 0.0038 -0.0022 0.0027 -0.0013 -0.0008 0.0009
(0.0034) (0.0045) (0.003) (0.0012) (0.0006) (0.0009) (0.0066) (0.001) (0.0012) (0.0012) (0.0017) (0.0015)

Services
-0.0006 -0.0004 0.0055 0.0004 -0.001 0.0003 -0.0004 0.0003 -0.0014 0.0004 0.0011 0.0007
(0.0027) (0.001) (0.015) (0.0008) (0.0006) (0.0007) (0.002) (0.0016) (0.0015) (0.0012) (0.0017) (0.0015)

Sectors are determined according to the BEA industry classification. Standard errors are in parentheses. Estimates
are from a value-added production function with endogenous and correlated effects. All specifications include

industry and year fixed effects.

C Bootstrap for Network Data

Resampling network data needs to preserve the dependence structure between firms

and across time. In my empirical application, I use the residual-based bootstrap
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whose asymptotic properties have been studied in the context of cross-sectional spa-

tially correlated data by Jin and Lee (2012). I modify the procedure by treating my

unbalanced panel as repeated cross-sections. I estimate the model, and obtain my first

stage estimates φ̂ and residuals ε̂t. If the residuals do not have zero mean, I subtract

the empirical mean from each residual and obtain ε̃t. Then, for each t = {1, · · · , T}
I draw samples of size nt from ϵ̃nt. Sampling R times, I obtain {ε∗rt }Rr=1 and use these

to generate psuedosamples:

y∗rt = φ̂t + ε∗rt

I re-estimate both the production function and productivity process on these pseudo-

samples, obtaining a set of elasticities {(α∗r
ℓ , α

∗r
ℓ )} and productivity process parame-

ters {(ρ∗r, λ∗r,β∗r)} that I use to construct standard errors and confidence intervals.
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Online Appendix

OA1 Derivation of Bias Terms

In this section, I derive expressions for the bias in production function elasticities

shown in section 3.3.

yt = αℓℓt + αkkt + ωt + εt

ωt = ρ(I − λGt)
−1ωt−1 + (I − λGt)

−1ζit = ρ
∑
s=0

λsGs
tωt−1 +

∑
s=0

λsGs
tζt

=⇒ yt = αℓℓt + αkkt + ρ
∑
s=0

λsGs
tωt−1 +

∞∑
s=0

λsGs
tζt + εt

ωt−1 = φt−1 − αℓℓt−1 − αkkt−1

=⇒ yt = αℓℓt + αkkt + ρ
∑
s=0

λsGs
t (φt−1 − αℓℓt−1 − αkkt−1) +

∞∑
s=0

λsGs
tζt + εt

yt−1 = φt−1 + εt

=⇒ yt = αℓℓt + αkkt + ρ
∞∑
s=0

λsGs
t (yt−1 − αℓℓt−1 − αkkt−1 − ut−1) +

∞∑
s=0

λsGs
tζt + εt

Let ∆Gxt = xt − ρ
∑∞

s=0 λ
sGs

txt−1, ∆
err
xt = ρ

∑∞
s=1 λ

sGs
txt−1 and ∆xt = xt − ρxt−1 =

∆Gxt +∆err
xt . This implies:

∆Gyt = αℓ∆
Gℓt + αk∆

Gkt +
∞∑
s=0

λsGs
tζt +∆Gεt (52)

This is equivalent to the dynamic panel approach in Blundell and Bond (2000).

However, growth in output, labor and capital have been purged of the variation from

network effects in the previous period. When we assume no spillovers, we estimate:

∆yt = αℓ∆ℓt + αk∆kt + ut (53)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing

non-classical measurement error into both output and inputs.

Bias from ignoring spillovers can also be characterized as an omitted variables
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problem. By estimating equation (53), where ut = ρ
∑∞

s=1 λ
sGs

tωt−1 +
∑∞

s=0 λ
sGs

tζt+

εt. That is, the standard ACF procedure succeeds in eliminating the endogeneity

problem that arises from input decisions depending on its own productivity, but is

unable to account for the influence of its network’s past productivity. In the OP case

where the labor elasticity is estimated in the first stage, the second stage is equivalent

to estimating:

∆Gỹt = αk∆
Gkt +

∞∑
s=0

λsGs
tζt +∆Gεt (54)

where ỹt = yt − α̂ℓℓt. Then by estimating ∆ỹt = αk∆kt + ut under the standard

assumption of no-spillovers:

plim α̂k =
cov(∆kt,∆ỹt)

var(∆kt)
(55)

plim = αk

(
1− ρ

∞∑
s=1

λs
cov(∆kt, G

s
tkt−1)

var(∆kt)

)
+ ρ

∞∑
s=1

λs
cov(∆kt, G

s
t ỹt−1)

var(∆kt)
(56)

When productivity is mismeasured by ignoring spillovers, the resulting estimates

also result in incorrect conclusions about spillover effects. When (αℓ, αk) are consis-

tently estimated,

plim ω̂t = φt − αℓℓt − αkkt = ωt (57)

However, when we estimate (α̃ℓ, α̃k) = (α̂ℓ + αerrℓ , α̂k + αerrk ), to obtain ω̃t = φ̂t −
α̃ℓℓt − α̃kkt. Then

ω̃t = φ̂t − α̃ℓℓt − α̃kkt = ω̂t − ωerrt (58)

where ωerrt = αerrℓ ℓt+α
err
k kt. In the generalized 2SLS procedure for estimating network

effects, we estimate λ̃ in the first stage by using Gtω̃t−1 as an instrument for Gtω̃t in

this equation:29 And so we estimate the following instead of the true model:

ω̃t = ρω̃t−1 + λGtω̃t + vt (59)

29Further lags of the network effect can be used (G2
t ω̃t, G

3
t ω̃t and so on). However, for ease of

exposition, I focus on the just-identified case.
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OA2 Monte Carlo Setup

The Monte Carlo setup closely follows Collard-Wexler and De Loecker (2016), Van Biese-

broeck (2007) and Ackerberg et al. (2015) with modifications for network generation

and the inclusion of spillovers in the productivity process. I generate a balanced panel

of 1000 firms over 10 time periods.

OA2.1 Production Function

I use a structural value-added production function that is Leontief in materials.

Yit = min{Lαℓit K
αk
it e

ωit , αmMit}eεit (60)

In logs, yit = αℓℓit + αkkit + ωit + εit, where εit ∼ N (0, σ2
ε) (61)

I set αℓ = 0.6, αk = 0.4 and σ2
ε = 1

OA2.2 Productivity Process and Network

Productivity evolves according to an AR1 process that allows for contemporaneous

endogenous productivity spillovers. In vectorized form:

ωt = β1ι+ ρωt−1 + λGtωt + ζt, where ζit ∼ N (0, σ2
ζ = 5) (62)

I generate productivity using the reduced form of the above equation:

ωt = (I− λGt)
−1 (β1ι+ ρωt−1 + ζt) (63)

Gt is the interaction matrix defined as in section 3.2 derived from the network. I

generate exogenous networks using Erdős and Rényi (1960) graphs, also known as

binomial graphs. Firms are edges are formed Aijt
i.i.d.∼ Bern(p).

OA2.3 Intermediate Input Demand

Materials demand is given by:

Mit =
1

αm
Kαk
it L

αℓ
it e

ωit ⇐⇒ mit = αkkit + αℓℓit + ωit − ln(αm) (64)
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OA2.4 Labor Demand

Wages, Wit are firm-year specific and distributed log-normally: ln(Wt) ∼ N (0, σ2
w).

Then each firm chooses optimal labor according to:

Lit =

(
αℓ
Kαk
it

Wit

eωit
) 1

1−αℓ
⇐⇒ ℓit =

1

1− αℓ
(ln(αℓ) + αkkit + ωit − ln(Wit)) (65)

OA2.5 Capital and Optimal Investment

Capital is accumulated according to Kit = (1− δ)Kit−1 + It−1 where δ = 0.2.

Investment is subject to convex adjustment costs c(Iit) = b
2
I2it with b = 0.3.

Optimal investment can be derived by setting up the profit maximization problem:30

Πit = Lαℓit K
αk
it e

ωit −WitLit −
b

2
I2it (66)

Here, I assume perfect competition and normalize the price of output to 1. The firm’s

value function is :

V (Lit, Kit,Wit, ωit) = max
Lit,Kit

Lαℓit K
αk
it e

ωit −WitLit −
b

2
I2it

+ β Eit V (Lit+1, Kit+1,Wit+1, ωit+1)

(67)

β is the discount factor set to 0.95. Optimal investment solves the Euler equation
∂V

∂I
= 0:

bIit = β Eit VK(Lit+1, Kit+1,Wit+1, ωit+1) (68)

The envelope condition yields:

VK(Lit, Kit,Wit, ωit) = αkL
αℓ
it K

αk−1
it eωit + β(1− δ)Eit VK(Lit+1, Kit+1,Wit+1, ωit+1)

(69)

Substituting in (65) and (68):

VK(Lit, Kit,Wit, ωit) = αkα
αℓ

1−αℓ
ℓ K

αk+αℓ−1

1−αℓ
it W

−αℓ
1−αℓ
it e

ωit
1−αℓ + b(1− δ)Iit (70)

30This derivation follows Collard-Wexler and De Loecker (2016) and Van Biesebroeck (2007).
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Given a constant returns to scale technology (αℓ + αk = 1), the Euler equation be-

comes:

Iit =
βαk
b
α

αℓ
1−αℓ
ℓ Eit

[
W

−αℓ
1−αℓ
it+1 e

ωit+1
1−αℓ

]
+ β(1− δ)Eit Iit+1 (71)

=⇒ Iit =
βαk
b
α

αℓ
1−αℓ
ℓ

∞∑
τ=0

βτ (1− δ)τ Eit
[
W

−αℓ
1−αℓ
it+1+τe

ωit+1+τ
1−αℓ

]
(72)

Since wages and productivity are drawn independently,

Eit
[
W

−αℓ
1−αℓ
it+1+τe

ωit+1+τ
1−αℓ

]
= Eit

[
W

−αℓ
1−αℓ
it+1+τ

]
Et
[
e
ωit+1+τ
1−αℓ

]

for all τ ≥ 0. Furthermore, ln(Wit) ∼ N (0, σw)
2 =⇒ Eit

[
W

−αℓ
1−αℓ
it+1+τ

]
= exp

(
α2
ℓσ

2
w

2(1−αℓ)2

)
.

The value of Et
[
e
ωt+1+τ
1−αℓ

]
depends on the productivity process:

ωt+1+τ =ρ
τ+1

τ∏
r=0

(I − λGt+τ+1−r)
−1ωt +

τ∑
r=0

ρr
r∏
s=0

(I − λGt+τ+1−s)
−1εt+τ+1−r (73)

Et
[
e
ωt+1+τ
1−αℓ

]
depends on the whether spillovers exist, and if they do, how firms form

expectations about future links. When there are no spillovers λ = 0:

Et = exp

(
ρτ+1ωit
1− αℓ

) τ∏
r=0

exp

(
ρ2rσ2

ζ

2(1− αℓ)2

)
(74)

Let G represent the result of firms’ beliefs about their future network. For example,

if networks are non-stochastic or firms naively believe that Gt+τ = Gt ∀τ > 0, then

we can set G = Gt+1, which is deterministic given our previous assumption that

Gt+1 ∈ It:

Eit
[
e
ωit+1+τ
1−αℓ

]
= exp

(
ρτ+1

1− αℓ
(I − λG)−(τ+1)ωt

) τ∏
r=0

exp

(
ρ2rσ2

ζ

2(1− αℓ)2(1− λ)2(r+1)

)

Therefore, optimal investment choice reduces to a function of parameters and current
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productivity:

It =
βαk
b
α

αℓ
1−αℓ
ℓ exp

(
α2
ℓσ

2
w

2(1− αℓ)2

) ∞∑
τ=0

βτ (1− δ)τ exp

(
ρτ+1

1− αℓ
(I − λG)−(τ+1)ωt

+
σ2
ζ

2(1− αℓ)2(1− λ)2

τ∑
r=0

(
ρ

1− λ

)2r
) (75)

When there are no spillovers, this reduces to:

It =
βαk
b
α

αℓ
1−αℓ
ℓ exp

(
α2
ℓσ

2
w

2(1− αℓ)2

) ∞∑
τ=0

βτ (1− δ)τ exp

(
ρτ+1ωt
1− αℓ

+
σ2
ζ

∑τ
r=0 ρ

2r

2(1− αℓ)2

)
(76)

For alternative assumptions on the productivity process, such as a quadratic AR1

process, and endogenous network formation, it is not feasible to derive an closed-

form solution as above. However, as long technology exhibits constant returns to

scale, I approximate optimal investment as follows. Firstly, given |β(1 − δ)| < 1,

then for some tolerance level close to zero, βτ (1 − δ)τ < tolerance. Therefore, I can

choose M sufficiently high such that
∑M

τ=0 β
τ (1− δ)τ Eit

[
W

−αℓ
1−αℓ
it+1+τe

ωit+1+τ
1−αℓ

]
is a good

approximation for
∑∞

τ=0 β
τ (1 − δ)τ Eit

[
W

−αℓ
1−αℓ
it+1+τe

ωit+1+τ
1−αℓ

]
. I set a tolerance level of

e−4, and given β(1− δ) = 0.95(1− 0.2), then M = 34.

Next, at each time t, I draw 100 realizations of the sequence {ωit+1+τ}Mτ=0 for each

firm i and approximate Eit
[
exp

(
ωit+1+τ

1−αℓ

)]
= 1

100

∑100
s=0 exp

(
ωit+1+τ,s

1−αℓ

)
.
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OA3 Monte Carlo Experiments

I conduct two sets of experiments to assess the performance of the standard ACF es-

timator and my modified procedure when various types of network effects are present.

In the first set of experiments, I sequentially add in each type of network effect and

demonstrate their impact on the bias and efficiency of parameters estimated with

the standard and modified approaches. Second, I vary the size of the endogenous

effect, network density and productivity persistence to these factors affect spillover

identification.

For all three experiments, I draw a balanced sample of 1000 firms over 10 years.

I use a Cobb-Douglas production function in logs:

yit = αℓℓit + αkkit + ωit + εit

where εit ∼ N (0, σ2
ε). I set αℓ = 0.6, αk = 0.4 and σ2

ε = 1.31 The productivity process

varies depending on the experiment. To avoid the impact of arbitrary initial values,

I simulate 20 periods and discard the first 10.

To induce variation in cluster (component) size and the length of supply chains,

I split the firms into four industries with 400, 300, 200, and 100 firms in the first,

second, third and fourth industries respectively and construct an inter-industry trade

structure as follows: Industry 1 sells 17%, 33% and 44% percent of its output to

industries 2, 3 and 4 respectively. Industry 2 sells to 50% each to 3 and 4, while

industry 3 sells all its output to industry 4, which sells nothing to other firms. This

structure is fixed over time, and does not represent the actual network but is a measure

of industry compatibility that I use to generate both exogenous and endogenous

networks as described below.32

31See section OA2 in the appendix for further details on the Monte Carlo setup.
32I have set up data-generating processes for my Monte Carlo experiments to be as simple as

possible while allowing for network effects. However, it is worth noting that these DGPs do not reflect
important features of firm-level empirical data, particularly fat-tailed productivity and network
degree distributions. Exploring how these features would affect bias and precision on my estimator
is left for future work.
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OA3.1 Experiment 1: Comparison of Estimates from Stan-

dard and Modified ACF Procedures

I simulate five data generating processes (DGPs) in which productivity evolves as

follows:

ωt = β1ι+ ρωt−1 + βxxt + λGtωt + βx̄Gtxt + cψt + ζt (77)

where ζit ∼ N (0, σ2
ζ ). To induce a non-linear relationship between x and capital,

I generate it according to x = 0.5 ln(
√
Kt−1) + x̃, where x̃ ∼ N (−2, σ2

x̃). Since it

depends on Kt−1, it is not correlated with ζt. I set β1 = 0.5, ρ = 0.6, βx = 0.4, σ2
ζ =

1.25, and σ2
x̃ = 5.

For DGPs 1 to 4, I generate an exogenous directed network in each period by

randomly assigning links with probability P (Aijt = 1) =
indshareij
indsizej

where indshareij

is the compatibility of i and j’s industries obtained from the industry compatibility

matrix described above, while indsizej is the number of firms in j’s industry. DGP 1

has no network effects (λ = 0, βx̄ = 0, cψt = 0) and exogenous network formation, and

the ACF estimates should be consistent. DGP 2 features only the endogenous effect

(λ = 0.3) and DGP 3 adds in the contextual effect (βx̄ = 0.3). In DGP 4, I draw

component fixed effects in each period from a normal distribution with a mean of 1

and a standard deviation of 1 (cψtN (1, 1)). For DGP 5, I start with an exogenous

network in the first period, then simulate future networks using the model in section

5 with the coefficient of the selection term δ =
σζξ
σ2
ξ
= 0.003.

I consider 4 estimators. The first is a standard ACF that assumes no network ef-

fects with a second-degree polynomial approximation in the first and second stages..

Using the TFP measure obtained from ACF, I estimate network effects with the gen-

eralized 2SLS procedure described in section 4.3. This is the approach typically used

in empirical studies of productivity spillovers. ACF-N is my modified procedure that

jointly estimates productivity and network effects. ACF-ND uses global differencing

to eliminate correlated effects, and ACF-NDS accounts for selection using the net-

work formation model in section 5.3. All estimators use a second-degree polynomial

in capital, labor and materials in the first stage, and a linear productivity process in

the second. The results are shown in table 1.

Under DGP 1, all estimators perform well when estimating both the production
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Table 1: Comparison of Estimates from Standard ACF and Modified ACF Procedures

DGP Estimator
Elasticities Productivity Process Coefficients

αℓ αk ρ βx βx̄ λ
σζξ
σ2
ξ

DGP 1

True values 0.6 0.4 0.6 0.4 0.0 0.0 0.0

ACF Mean 0.599 0.4 0.6 0.401 0. -0.001
Std. Dev. (0.025) (0.061) (0.015) (0.026) (0.009) (0.01)

ACF-N Mean 0.602 0.392 0.601 0.398 0. -0.001
Std. Dev. (0.018) (0.061) (0.016) (0.019) (0.009) (0.01)

ACF-ND Mean 0.603 0.389 0.601 0.397 -0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.024) (0.01) (0.011)

ACF-NDS Mean 0.603 0.39 0.601 0.397 -0. 0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.025) (0.01) (0.012) (0.002)

DGP 2

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.595 0.516 0.556 0.402 0.092 0.332
Std. Dev. (0.035) (0.07) (0.017) (0.035) (0.016) (0.042)

ACF-N Mean 0.601 0.401 0.596 0.399 0.121 0.242
Std. Dev. (0.018) (0.046) (0.016) (0.018) (0.013) (0.026)

ACF-ND Mean 0.602 0.398 0.595 0.397 0.118 0.249
Std. Dev. (0.028) (0.055) (0.016) (0.028) (0.014) (0.026)

ACF-NDS Mean 0.602 0.396 0.596 0.397 0.115 0.257 -0.004
Std. Dev. (0.027) (0.055) (0.016) (0.028) (0.014) (0.026) (0.002)

DGP 3

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.616 0.496 0.479 0.362 0.121 0.357
Std. Dev. (0.169) (0.417) (0.171) (0.161) (0.102) (0.496)

ACF-N Mean 0.741 0.162 0.514 0.257 0.082 0.222
Std. Dev. (0.154) (0.215) (0.269) (0.154) (0.072) (0.62)

ACF-ND Mean 0.614 0.368 0.605 0.385 0.109 0.266
Std. Dev. (0.032) (0.052) (0.017) (0.032) (0.012) (0.018)

ACF-NDS Mean 0.614 0.368 0.605 0.385 0.108 0.269 -0.002
Std. Dev. (0.032) (0.052) (0.018) (0.032) (0.012) (0.018) (0.002)

DGP 4

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.003

ACF Mean 0.607 0.35 0.603 0.374 0.128 0.255
Std. Dev. (0.138) (0.239) (0.147) (0.166) (0.109) (0.122)

ACF-N Mean 0.705 0.183 0.637 0.291 0.067 0.236
Std. Dev. (0.137) (0.213) (0.184) (0.142) (0.056) (0.2)

ACF-ND Mean 0.619 0.368 0.61 0.383 0.091 0.281
Std. Dev. (0.073) (0.116) (0.056) (0.07) (0.023) (0.037)

ACF-NDS Mean 0.621 0.362 0.612 0.38 0.09 0.28 0.001
Std. Dev. (0.078) (0.129) (0.064) (0.076) (0.026) (0.037) (0.002)

Based on 1000 replications.
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function and the productivity process. Furthermore, precision is not diminished. It is

important to note that allowing for spillovers under the modified procedure does not

produce spurious estimates of network effects. With the combined impact of endoge-

nous and contextual effects in DGP 2, ACF significantly overestimates the capital

coefficient but still gives reasonable estimates of network effects in the productivity

process, although the endogenous effect is slightly overestimated. All three modified

procedures yield estimates of the input elasticities that are close to the truth but

slightly underestimate λ.

When there are network fixed effects, my benchmark procedure, ACF-N over-

estimates the labor coefficient and underestimates capital elasticity, the persistence

parameter, and the endogenous effect. This signals the need for caution when intro-

ducing network terms without accounting for correlated effects: indeed, the standard

ACF performs better because all network terms containing Gt introduce bias due to

their corrrelation with the error term. Differencing improves both consistency and

precision, with standard deviations up to 60 times smaller than under ACF and ACF-

N. Bias due to endogenous network formation is negligible, presumably because the

coefficient
σζξ
σ2
ξ
on the omitted variable is small. Other than reduced precision when

compared to ACF-ND, estimates of the productivity process and elasticities are not

different from when selection is accounted for with ACF-NDS.

OA3.2 Experiment 2: Effect of Network Density on Bias and

Precision

In this experiment, I further explore how precision and consistency vary with network

density in the presence of an endogenous spillover. I employ a quadratic AR1 process

for productivity:

ωt = β1 + ρ1ωt−1 + ρ2ω
2
t−1 + λGtωt + ζt (78)

where ζit ∼ N (0, σ2
ζ ). I set β1 = 0.5, ρ2 = −0.01, and σ2

ζ = 5. The quadratic term

is necessary to explore high values of λ and ρ1. If productivity is persistent and

the endogenous spillover is also large, then the simulated values of productivity grow

quite large for some firms, and the resulting investment series soon tends to infinity
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Figure 1: Effect of Network Density on Spillover Estimates

Estimates of endogenous network effects (λ) as network density varies.
See table 2 for the full set of parameter estimates.

for highly productive firms33. The quadratic term serves as a dampener to control

the size ωt in the simulation.34 Additionally, it allows for the comparison of ACF and

my modified procedure when the productivity process is not linear.

To vary network density, I draw random exogenous networks using Erdős and

Rényi (1960) graphs, also known as binomial graphs. Edges are formed Aijt
i.i.d.∼

Bern(p) and the density of the graph is equal to the probability of a link forming

between two firms, p. This class of graphs has several features worth noting. First,

intransitivity rises as the density falls. This is an advantage because intransitivity

helps with identification of the endogenous network effect, so we can expect more

precise estimates as the network gets more sparse. Secondly, when p > 1
Nt
, a giant

component emerges that contains more vertices than any other component of the

network. In my Monte Carlo experiments, this means that for graphs with density

> 0.001 the infinite series of terms Gs
t will go to zero much more slowly than with

density ≤ 0.001. Therefore, one would expect the potential bias to be greater as

density increases, particularly once it crosses the 0.001 threshold. However, it is

worth noting that the resulting degree distribution is binomial B(Nt− 1, p), which is

approximately normal whereas buyer-supplier networks have empirically been found

33See details on optimal investment in section OA2.5 in the appendix
34It is also worth mentioning that in empirical applications, estimating flexible forms of the produc-

tivity process may be necessary. Otherwise, the linearity of the Markov process may force estimates
of λ to be small or negative.
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to follow a Pareto (power-law) degree distribution (Bernard and Moxnes, 2018).

Table 2: Effect of Sparsity on Bias and Precision (Quadratic AR1)

Density (%) Estimator
Elasticities Productivity Process Coefficients

Density (%) Estimator
Elasticities Productivity Process Coefficients

αℓ αk β1 ρ1 ρ2 λ αℓ αk β1 ρ1 ρ2 λ

0.6 0.4 0.5 0.8 -0.01 0.3 0.6 0.4 0.5 0.8 -0.01 0.3

0.01

ACF 0.603 0.358 -0.125 0.809 -0.01 0.087

0.5

ACF 0.605 0.637 -0.109 0.462 -0.019 0.312
(0.024) (0.239) (2.369) (0.216) (0.003) (0.106) (0.067) (0.138) (0.987) (0.161) (0.017) (0.201)

ACF-N 0.617 0.413 -0.23 0.76 -0.01 0.226 ACF-N 0.608 0.388 0.509 0.818 -0.01 0.291
(0.057) (0.165) (2.845) (0.196) (0.022) (0.109) (0.03) (0.057) (0.298) (0.05) (0.007) .042)

0.03

ACF 0.604 0.359 0.122 0.81 -0.01 0.113

0.7

ACF 0.606 0.639 -0.405 0.47 -0.026 0.545
(0.024) (0.216) (1.975) (0.19) (0.003) (0.12) (0.073) (0.149) (13.879) (0.694) (0.207) (0.696)

ACF-N 0.632 0.381 0.379 0.764 -0.011 0.241 ACF-N 0.607 0.385 0.437 0.818 -0.01 0.294
(0.093) (0.113) (1.456) (0.195) (0.038) (0.238) (0.027) (0.068) (0.339) (0.053) (0.002) (0.027)

0.05

ACF 0.605 0.377 0.209 0.798 -0.01 0.132

1

ACF 0.606 0.639 0.011 0.452 -0.019 0.388
(0.024) (0.195) (1.691) (0.169) (0.003) (0.126) (0.072) (0.153) (1.8) (0.2) (0.046) (0.925)

ACF-N 0.641 0.371 0.412 0.753 -0.009 0.25 ACF-N 0.606 0.386 0.404 0.815 -0.01 0.301
(0.106) (0.113) (1.226) (0.217) (0.034) (0.097) (0.031) (0.078) (0.404) (0.061) (0.005) 0.14)

0.07

ACF 0.606 0.387 0.271 0.791 -0.01 0.159

5

ACF 0.606 0.643 0.054 0.414 -0.024 0.446
(0.027) (0.182) (1.509) (0.158) (0.003) (0.137) (0.072) (0.152) (3.357) (0.782) (0.151) (0.833)

ACF-N 0.646 0.362 0.51 0.745 -0.007 0.243 ACF-N 0.605 0.388 0.417 0.813 -0.01 0.299
(0.116) (0.116) (0.506) (0.237) (0.046) (0.1) (0.032) (0.084) (0.399) (0.065) (0.004) .062)

0.09

ACF 0.606 0.411 0.266 0.771 -0.01 0.18

9

ACF 0.606 0.643 0.001 0.426 -0.021 0.413
(0.03) (0.168) (1.359) (0.147) (0.004) (0.145) (0.071) (0.154) (1.774) (0.406) (0.074) (0.928)

ACF-N 0.635 0.371 0.532 0.767 -0.011 0.252 ACF-N 0.604 0.388 0.42 0.813 -0.01 0.297
(0.101) (0.098) (0.308) (0.2) (0.037) (0.085) (0.03) (0.084) (0.401) (0.063) (0.003) (0.049)

0.3

ACF 0.602 0.617 -0.343 0.523 -0.017 0.261

10

ACF 0.606 0.642 -0.003 0.425 -0.021 0.417
(0.053) (0.114) (1.261) (0.137) (0.011) (0.184) (0.073) (0.157) (1.812) (0.417) (0.077) (0.952)

ACF-N 0.611 0.389 0.585 0.815 -0.01 0.283 ACF-N 0.604 0.388 0.42 0.814 -0.01 0.296
(0.038) (0.049) (0.256) (0.06) (0.009) (0.035) (0.028) (0.083) (0.403) (0.061) (0.003) (0.032)

Based on 1000 replications. Standard deviations in parentheses.

Figure 1 and table 2 shows the results. ACF estimates of the capital elasticity

appear unbiased for densities ≤ 0.001 and increases to over 50% of the true value

for densities above 0.001. Estimates of λ increase with density while ρ1 moves in the

opposite direction. In comparison, my benchmark procedure ACF-N provides stable

and consistent estimates of both the elasticities and productivity process at most

densities. When the network is very sparse, however, my procedure underestimates λ

and does so with less precision because the instrument G2
tωt−1 is weaker when there

are few triads in the network.
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